stellar wind
Recently Published Documents


TOTAL DOCUMENTS

741
(FIVE YEARS 87)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 924 (2) ◽  
pp. 88
Author(s):  
Seonho Kim ◽  
Kwang Hyun Sung ◽  
Kyujin Kwak

Abstract The isotopic compositions of ruthenium (Ru) are measured from presolar silicon carbide (SiC) grains. In a popular scenario, the presolar SiC grains formed in the outskirt of an asymptotic giant branch (AGB) star, left the star as a stellar wind, and joined the presolar molecular cloud from which the solar system formed. The Ru isotopes formed inside the star, moved to the stellar surface during the AGB phase, and were locked into the SiC grains. Following this scenario, we analyze the Nucleosynthesis Grid (NuGrid) data, which provide the abundances of the Ru isotopes in the stellar wind for a set of stars in a wide range of initial masses and metallicities. We apply the C > O (carbon abundance larger than the oxygen abundance) condition, which is commonly adopted for the condition of the SiC formation in the stellar wind. The NuGrid data confirm that SiC grains do not form in the winds of massive stars. The isotopic compositions of Ru in the winds of low-mass stars can explain the measurements. We find that lower-mass stars (1.65 M ☉ and 2 M ☉) with low metallicity (Z = 0.0001) can explain most of the measured isotopic compositions of Ru. We confirm that the abundance of 99 Ru inside the presolar grain includes the contribution from the in situ decay of 99 Tc. We also verify our conclusion by comparing the isotopic compositions of Ru integrated over all the pulses with those calculated at individual pulses.


2021 ◽  
Vol 922 (2) ◽  
pp. 183
Author(s):  
Xuepeng Chen ◽  
Weihua Guo ◽  
Li Sun ◽  
Jiangchen Feng ◽  
Yang Su ◽  
...  

Abstract We present wide-field multiwavelength observations of γ Cassiopeiae (or γ Cas for short) in order to study its feedback toward the interstellar environment. A large expanding cavity is discovered toward γ Cas in the neutral hydrogen (H i) images at a systemic velocity of about −10 km s−1. The measured dimension of the cavity is roughly 2.°0 × 1.°4 (or 6.0 pc × 4.2 pc at a distance of 168 pc), while the expansion velocity is ∼5.0 ± 0.5 km s−1. The CO observations reveal systematic velocity gradients in IC 63 (∼20 km s−1 pc−1) and IC 59 (∼30 km s−1 pc−1), two cometary globules illuminated by γ Cas, proving fast acceleration of the globules under stellar radiation pressure. The gas kinematics indicate that the cavity is opened by strong stellar wind, which has high potential to lead to the peculiar X-ray emission observed in γ Cas. Our result favors a new scenario that emphasizes the roles of stellar wind and binarity in the X-ray emission of the γ Cas stars.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 422
Author(s):  
Andrey Zhilkin ◽  
Dmitri Bisikalo

A numerical model description of a hot Jupiter extended envelope based on the approximation of multi-component magnetic hydrodynamics is presented. The main attention is focused on the problem of implementing the completed MHD stellar wind model. As a result, the numerical model becomes applicable for calculating the structure of the extended envelope of hot Jupiters not only in the super-Alfvén and sub-Alfvén regimes of the stellar wind flow around and in the trans-Alfvén regime. The multi-component MHD approximation allows the consideration of changes in the chemical composition of hydrogen–helium envelopes of hot Jupiters. The results of calculations show that, in the case of a super-Alfvén flow regime, all the previously discovered types of extended gas-dynamic envelopes are realized in the new numerical model. With an increase in magnitude of the wind magnetic field, the extended envelope tends to become more closed. Under the influence of a strong magnetic field of the stellar wind, the envelope matter does not move along the ballistic trajectory but along the magnetic field lines of the wind toward the host star. This corresponds to an additional (sub-Alfvénic) envelope type of hot Jupiters, which has specific observational features. In the transient (trans-Alfvén) mode, a bow shock wave has a fragmentary nature. In the fully sub-Alfvén regime, the bow shock wave is not formed, and the flow structure is shock-less.


2021 ◽  
Vol 922 (1) ◽  
pp. L3
Author(s):  
Lachlan Lancaster ◽  
Eve C. Ostriker ◽  
Jeong-Gyu Kim ◽  
Chang-Goo Kim

Abstract Stellar winds contain enough energy to easily disrupt the parent cloud surrounding a nascent star cluster, and for this reason they have long been considered candidates for regulating star formation. However, direct observations suggest most wind power is lost, and Lancaster et al. recently proposed that this is due to efficient mixing and cooling processes. Here we simulate star formation with wind feedback in turbulent, self-gravitating clouds, extending our previous work. Our simulations cover clouds with an initial surface density of 102–104 M ⊙ pc−2 and show that star formation and residual gas dispersal are complete within two to eight initial cloud freefall times. The “efficiently cooled” model for stellar wind bubble evolution predicts that enough energy is lost for the bubbles to become momentum-driven; we find that this is satisfied in our simulations. We also find that wind energy losses from turbulent, radiative mixing layers dominate losses by “cloud leakage” over the timescales relevant for star formation. We show that the net star formation efficiency (SFE) in our simulations can be explained by theories that apply wind momentum to disperse cloud gas, allowing for highly inhomogeneous internal cloud structure. For very dense clouds, the SFE is similar to those observed in extreme star-forming environments. Finally, we find that, while self-pollution by wind material is insignificant in cloud conditions with moderate density (only ≲10−4 of the stellar mass originated in winds), our simulations with conditions more typical of a super star cluster have star particles that form with as much as 1% of their mass in wind material.


2021 ◽  
Vol 508 (2) ◽  
pp. 1768-1776
Author(s):  
J M Pittard ◽  
C J Wareing ◽  
M M Kupilas

ABSTRACT Stellar winds are one of several ways that massive stars can affect the star formation process on local and galactic scales. In this paper, we investigate the numerical resolution needed to inflate an energy-driven stellar wind bubble in an external medium. We find that the radius of the wind injection region, rinj, must be below a maximum value, rinj,max, in order for a bubble to be produced, but must be significantly below this value if the bubble properties are to closely agree with analytical predictions. The final bubble momentum is within 25 per cent of the value from a higher resolution reference model if χ = rinj/rinj,max = 0.1. Our work has significance for the amount of radial momentum that a wind-blown bubble can impart to the ambient medium in simulations, and thus on the relative importance of stellar wind feedback.


Author(s):  
L B De Toni ◽  
R Gaelzer

Abstract Using a kinetic description of a homogeneous magnetized dusty plasma with Maxwellian distribution of electrons and protons and dust particles charged by inelastic collisions and by photoionization, we analyse the dispersion relation considering the case where waves and radiation propagate exactly parallel to the ambient magnetic field. The investigation emphasizes the changes that the photoionization process brings to the propagation and damping of the waves in a stellar wind environment, since Alfvén waves are believed to play a significant role in the heating and acceleration processes that take place in the wind. The results show that, in the presence of dust with negative equilibrium electrical charge, the Alfvén mode decouples into the whistler and ion cyclotron modes for all values of wavenumber, but when dust particles acquire neutral or positive values of electrical charge, these modes may couple for certain values of wavenumber. It is also seen that the whistler and ion cyclotron modes present null group velocity in a interval of small wavenumber, and that the maximum value of wavenumber for which the waves are non-propagating is reduced in the presence of the photoionization process. For very small values of wavenumber, the damping rates of the modes could change significantly from very small to very high values if the sign of the dust electrical charge is changed.


Author(s):  
V. V. Topolev ◽  
V. M. Lipunov

This article discusses a model for the occurrence of quasiperiodic oscillations in the optical light curve of a gamma-ray burst(GRB). The model is based on the assumption that GRB occurs in a binary system with strong stellar wind. Progenitor is a small core of helium star which emits a strong stellar wind that perturbs by the compact companion (neutron star).There is a calculation of model parameters by using the GRB160625B as an example, for which the MASTER global network received an optical curve with high time resolution.


2021 ◽  
Author(s):  
Ildar Shaikhislamov ◽  
Maxim Khodachenko ◽  
Ilya Miroshnichenko ◽  
Marina Rumenskikh ◽  
Artem Berezutsky

<p>Using the global 3D multi-fluid HD and its extension to MHD we simulated the measured HD209458b transit absorption depths at the FUV lines, and at the NIR line (10830 Å) of metastable helium HeI(2<sup>3</sup>S) triplet, paying attention to possible change of the absorption profiles due to the presence of planetary intrinsic magnetic field. As continuation of our previous studies of HD209458b (<em>Shaikhislamov et al. 2018, 2020</em>), the inclusion of the HeI(2<sup>3</sup>S) line into consideration and the comparison with corresponding measurements allows to constrain the helium abundance by He/H ~ 0.02, and stellar XUV flux at 1 a.u. by <em>F</em><sub>XUV </sub>~10 erg cm<sup>2</sup> s<sup>-1</sup> at 1 a.u. For the first time, we studied the influence of the planetary dipole magnetic field with a model which self-consistently describes the generation of the escaping upper atmospheric flow of a magnetized hot Jupiter, formation of magnetosphere and its interaction with the stellar wind. We simulated the absorption in the most of spectral lines for which measurements have been made. MHD simulations have shown that the planetary magnetic dipole moment µ<sub>P</sub> = 0.61 of the Jovian value, which produces the magnetic field equatorial surface value of 1 G, profoundly changes the character of the escaping planetary upper atmosphere. The total mass loss rate in this case is reduced by 2 times, as compared to the non-magnetized planet. In particular, we see the formation of the dead- and the wind- zones around the planet with the different character of plasma motion there. The 3D MHD modelling also confirmed the previous 2D MHD simulations result of <em>Khodachenko et al (2015) </em>that the escaping PW forms a thin magnetodisk in the equatorial region around the planet. The significantly reduced velocity of PW at the low altitudes around the planet, and especially at the night side, results in the stronger photo-ionization of species and significantly lower densities of the corresponding absorbing elements. Altogether, the reduced velocities and lower densities result in significant decrease of the absorption at Lyα (HI), OI, and CII lines, though the absorption at HeI(2<sup>3</sup>S) line remains nearly the same.</p> <p>As it was shown in our previous papers, the dense and fast stellar wind, interacting with the escaping upper atmosphere of HD209458b, generates sufficient amount of Energetic Neutral Atoms (ENAs) to produce significant absorption in the high-velocity blue wing of the Lyα line. However, according to the performed 3D MHD modelling reported here, the planetary magnetic dipole field with the equatorial surface value of B<sub>p</sub>=1 G prevents the formation of ENAs, especially in the trailing tail. This effect opens a possibility to constrain the range of planetary magnetic field values for the evaporating hot Jupiters and warm Neptunes in the stellar-planetary systems where sufficiently strong SW is expected.</p> <p>The presented results fitted to the available measurements indicate that the magnetic field of HD209458b should be at least an order of magnitude less than that of the Jupiter. This conclusion agrees with the previous estimates, based on more simplified models (e.g., <em>Kislyakova et al. 2014</em>) and much less observational data, when only Lyα absorption was considered. We believe that the application of 3D MHD models simulating the escape of upper atmospheres of hot exoplanets and the related transits at the available for measurement spectral lines, sensitive to the dynamics of planetary plasma affected by the MF, opens a way for probing and quantifying of exoplanetary magnetic fields and sheds more light on their nature.</p> <p>This work was supported by grant № 18-12-00080 of the Russian Science Foundation and grant № 075-15-2020-780 of the Russian Ministry of Education and Science.</p> <p> </p> <p>Khodachenko, M.L., Shaikhislamov, I.F., Lammer, H., et al., 2015, ApJ, 813, 50.</p> <p>Shaikhislamov, I. F., Khodachenko, M. L., Lammer, H., et al., 2018, ApJ, 866(1), 47.</p> <p>Shaikhislamov, I. F., Khodachenko, M. L., Lammer, et al., 2020, MNRAS, 491(3), 3435-3447</p>


Sign in / Sign up

Export Citation Format

Share Document