ESMValTool - introducing a powerful model evaluation tool

Author(s):  
Valeriu Predoi ◽  
Bouwe Andela ◽  
Lee De Mora ◽  
Axel Lauer

<p>The Earth System Model eValuation Tool (ESMValTool) is a powerful community-driven diagnostics and performance metrics tool. It is used for the evaluation of Earth System Models (ESMs) and allows for routine comparisons of either multiple model versions or observational datasets. ESMValTool's design is highly modular and flexible so that additional analyses can easily be added; in fact, this is essential to encourage the community-based approach to its scientific development. A set of standardized recipes for each scientific topic reproduces specific diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. Scientific themes include selected Essential Climate Variables, a range of known systematic biases common to ESMs such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases and soil hydrology-climate interactions, as well as atmospheric CO3 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. We will outline the main functional characteristics of ESMValTool Version 2; we will also introduce the reader to the current set of diagnostics and the methods they can use to contribute to its development.</p>

2015 ◽  
Vol 8 (9) ◽  
pp. 7541-7661 ◽  
Author(s):  
V. Eyring ◽  
M. Righi ◽  
M. Evaldsson ◽  
A. Lauer ◽  
S. Wenzel ◽  
...  

Abstract. A community diagnostics and performance metrics tool for the evaluation of Earth System Models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected Essential Climate Variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases and soil hydrology-climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the CMIP ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within the Coupled Model Intercomparison Project (CMIP) and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.


2016 ◽  
Vol 9 (5) ◽  
pp. 1747-1802 ◽  
Author(s):  
Veronika Eyring ◽  
Mattia Righi ◽  
Axel Lauer ◽  
Martin Evaldsson ◽  
Sabrina Wenzel ◽  
...  

Abstract. A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology–climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.


2020 ◽  
Vol 13 (7) ◽  
pp. 3383-3438 ◽  
Author(s):  
Veronika Eyring ◽  
Lisa Bock ◽  
Axel Lauer ◽  
Mattia Righi ◽  
Manuel Schlund ◽  
...  

Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top–down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.


2021 ◽  
Author(s):  
Jerome Servonnat ◽  
Eric Guilyardi ◽  
Zofia Stott ◽  
Kim Serradell ◽  
Axel Lauer ◽  
...  

<p>Developing an Earth system model evaluation tool for a broad user community is a real challenge, as the potential users do not necessarily have the same needs or expectations. While many evaluation tasks across user communities include common steps, significant differences are also apparent, not least the investment by institutions and individuals in bespoke tools. A key question is whether there is sufficient common ground to pursue a community tool with broad appeal and application.</p><p>We present the main results of a survey carried out by Assimila for the H2020 IS-ENES3 project to review the model evaluation needs of European Earth System Modelling communities. Interviewing approximately 30 participants among several European institutions, the survey targeted a broad range of users, including model developers, model users, evaluation data providers, and infrastructure providers. The output of the study provides an analysis of  requirements focusing on key technical, standards, and governance aspects.</p><p>The study used ESMValTool as a  current benchmark in terms of European evaluation tools. It is a community diagnostics and performance metrics tool for the evaluation of Earth System Models that allows for comparison of single or multiple models, either against predecessor versions or against observations. The tool is being developed in such a way that additional analyses can be added. As a community effort open to both users and developers, it encourages open exchange of diagnostic source code and evaluation results. It is currently used in Coupled Model Intercomparison Projects as well as for the development and testing of “new” models.</p><p>A key result of the survey is the widespread support for ESMValTool amongst users, developers, and even those who have taken or promote other approaches. The results of the survey identify priorities and opportunities in the further development of the ESMValTool to ensure long-term adoption of the tool by a broad community.</p>


2020 ◽  
Vol 13 (3) ◽  
pp. 1179-1199 ◽  
Author(s):  
Mattia Righi ◽  
Bouwe Andela ◽  
Veronika Eyring ◽  
Axel Lauer ◽  
Valeriu Predoi ◽  
...  

Abstract. This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features a brand new design, with an improved interface and a revised preprocessor. It also features a significantly enhanced diagnostic part that is described in three companion papers. The new version of ESMValTool has been specifically developed to target the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows applying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than its predecessor by about a factor of 3. The performance can be further improved, up to a factor of more than 30, when the newly introduced task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures. ESMValTool v2.0 also includes a revised and simplified installation procedure, the setting of user-configurable options based on modern language formats, and high code quality standards following the best practices for software development.


2021 ◽  
Author(s):  
Bouwe Andela ◽  
Fakhereh Alidoost ◽  
Lukas Brunner ◽  
Jaro Camphuijsen ◽  
Bas Crezee ◽  
...  

<p>The Earth System Model Evaluation Tool (ESMValTool) is a free and open-source community diagnostic and performance metrics tool for the evaluation of Earth system models such as those participating in the Coupled Model Intercomparison Project (CMIP). Version 2 of the tool (Righi et al. 2020, www.esmvaltool.org) features a brand new design composed of a core that finds and processes data according to a ‘recipe’ and an extensive collection of ready-to-use recipes and associated diagnostic codes for reproducing results from published papers. Development and discussion of the tool (mostly) takes place in public on https://github.com/esmvalgroup and anyone with an interest in climate model evaluation is welcome to join there.</p><p> </p><p>Since the initial release of version 2 in the summer of 2020, many improvements have been made to the tool. It is now more user friendly with extensive documentation available on docs.esmvaltool.org and a step by step online tutorial. Regular releases, currently planned three times a year, ensure that recent contributions become available quickly while still ensuring a high level of quality control. The tool can be installed from conda, but portable docker and singularity containers are also available.</p><p> </p><p>Recent new features include a more user-friendly command-line interface, citation information per figure including CMIP6 data citation using ES-DOC, more and faster preprocessor functions that require less memory, automatic corrections for a larger number of CMIP6 datasets, support for more observational and reanalysis datasets, and more recipes and diagnostics.</p><p> </p><p>The tool is now also more reliable, with improved automated testing through more unit tests for the core, as well as a recipe testing service running at DKRZ for testing the scientific recipes and diagnostics that are bundled into the tool. The community maintaining and developing the tool is growing, making the project less dependent on individual contributors. There are now technical and scientific review teams that review new contributions for technical quality and scientific correctness and relevance respectively, two new principal investigators for generating a larger support base in the community, and a newly created user engagement team that is taking care of improving the overall user experience.</p>


2020 ◽  
Author(s):  
Axel Lauer ◽  
Fernando Iglesias-Suarez ◽  
Veronika Eyring ◽  
the ESMValTool development team

<p>The Earth System Model Evaluation Tool (ESMValTool) has been developed with the aim of taking model evaluation to the next level by facilitating analysis of many different ESM components, providing well-documented source code and scientific background of implemented diagnostics and metrics and allowing for traceability and reproducibility of results (provenance). This has been made possible by a lively and growing development community continuously improving the tool supported by multiple national and European projects. The latest version (2.0) of the ESMValTool has been developed as a large community effort to specifically target the increased data volume of the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the related challenges posed by analysis and evaluation of output from multiple high-resolution and complex ESMs. For this, the core functionalities have been completely rewritten in order to take advantage of state-of-the-art computational libraries and methods to allow for efficient and user-friendly data processing. Common operations on the input data such as regridding or computation of multi-model statistics are now centralized in a highly optimized preprocessor written in Python. The diagnostic part of the ESMValTool includes a large collection of standard recipes for reproducing peer-reviewed analyses of many variables across atmosphere, ocean, and land domains, with diagnostics and performance metrics focusing on the mean-state, trends, variability and important processes, phenomena, as well as emergent constraints. While most of the diagnostics use observational data sets (in particular satellite and ground-based observations) or reanalysis products for model evaluation some are also based on model-to-model comparisons. This presentation introduces the diagnostics newly implemented into ESMValTool v2.0 including an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of ESMs, new diagnostics for extreme events, regional model and impact evaluation and analysis of ESMs, as well as diagnostics for emergent constraints and analysis of future projections from ESMs. The new diagnostics are illustrated with examples using results from the well-established CMIP5 and the newly available CMIP6 data sets.</p>


2021 ◽  
Author(s):  
Lisa Bock ◽  
Birgit Hassler ◽  
Axel Lauer ◽  

<p>The Earth System Model Evaluation Tool (ESMValTool) has been developed with the aim of taking model evaluation to the next level by facilitating analysis of many different ESM components, providing well-documented source code and scientific background of implemented diagnostics and metrics and allowing for traceability and reproducibility of results (provenance). This has been made possible by a lively and growing development community continuously improving the tool supported by multiple national and European projects. The latest major release (v2.0) of the ESMValTool has been officially introduced in August 2020 as a large community effort, and since then several additional smaller releases have followed.</p><p>The diagnostic part of the ESMValTool includes a large collection of standard “recipes” for reproducing peer-reviewed analyses of many variables across ESM compartments including atmosphere, ocean, and land domains, with diagnostics and performance metrics focusing on the mean-state, trends, variability and important processes, phenomena, as well as emergent constraints. While most of the diagnostics use observational data sets (in particular satellite and ground-based observations) or reanalysis products for model evaluation some are also based on model-to-model comparisons. This presentation gives an overview on the latest scientific diagnostics and metrics added during the last year including examples of applications of these diagnostics to CMIP6 model data.</p>


2019 ◽  
Author(s):  
Mattia Righi ◽  
Bouwe Andela ◽  
Veronika Eyring ◽  
Axel Lauer ◽  
Valeriu Predoi ◽  
...  

Abstract. This paper describes the second major release of the Earth System Model Evaluation Tool (ESMValTool), a community diagnostic and performance metrics tool for the evaluation of Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). Compared to version 1.0, released in 2016, ESMValTool version 2.0 (v2.0) features a brand new design, with an improved interface and a revised preprocessor. It also features a significantly enhanced diagnostic part that is described in three companion papers. The new version of the ESMValTool has been specifically developed to target the increased data volume of CMIP Phase 6 (CMIP6) and the related challenges posed by the analysis and the evaluation of output from multiple high-resolution or complex ESMs. The new version takes advantage of state-of-the-art computational libraries and methods to deploy an efficient and user-friendly data processing. Common operations on the input data (such as regridding or computation of multi-model statistics) are centralized in a highly optimized preprocessor, which allows applying a series of preprocessing functions before diagnostics scripts are applied for in-depth scientific analysis of the model output. Performance tests conducted on a set of standard diagnostics show that the new version is faster than its predecessor by about a factor of three. The performance can be further improved, up to a factor of more than 30, when the newly-introduced task-based parallelization options are used, which enable the efficient exploitation of much larger computing infrastructures. ESMValTool v2.0 also includes a revised and simplified installation procedure, setting of user configurable options based on modern language formats, and high code quality standards following the best practices for software development.


2019 ◽  
Author(s):  
Veronika Eyring ◽  
Lisa Bock ◽  
Axel Lauer ◽  
Mattia Righi ◽  
Manuel Schlund ◽  
...  

Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of an easy-to-install, well documented Python package providing the core functionalities (ESMValCore) that performs common pre-processing operations and a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top-down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klima Rechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.


Sign in / Sign up

Export Citation Format

Share Document