emergent constraints
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 36)

H-INDEX

10
(FIVE YEARS 4)

Author(s):  
In‐Hong Park ◽  
Sang‐Wook Yeh ◽  
Seung‐Ki Min ◽  
Seok‐Woo Son

Author(s):  
Armineh Barkhordarian ◽  
Kevin W Bowman ◽  
Noel Cressie ◽  
Jeffrey Jewell ◽  
Junjie Liu

2021 ◽  
Vol 12 (3) ◽  
pp. 899-918
Author(s):  
Benjamin M. Sanderson ◽  
Angeline G. Pendergrass ◽  
Charles D. Koven ◽  
Florent Brient ◽  
Ben B. B. Booth ◽  
...  

Abstract. Studies of emergent constraints have frequently proposed that a single metric can constrain future responses of the Earth system to anthropogenic emissions. Here, we illustrate that strong relationships between observables and future climate across an ensemble can arise from common structural model assumptions with few degrees of freedom. Such cases have the potential to produce strong yet overconfident constraints when processes are represented in a common, oversimplified fashion throughout the ensemble. We consider these issues in the context of a collection of published constraints and argue that although emergent constraints are potentially powerful tools for understanding ensemble response variation and relevant observables, their naïve application to reduce uncertainties in unknown climate responses could lead to bias and overconfidence in constrained projections. The prevalence of this thinking has led to literature in which statements are made on the probability bounds of key climate variables that were confident yet inconsistent between studies. Together with statistical robustness and a mechanism, assessments of climate responses must include multiple lines of evidence to identify biases that can arise from shared, oversimplified modelling assumptions that impact both present and future climate simulations in order to mitigate against the influence of shared structural biases.


2021 ◽  
Vol 93 (2) ◽  
Author(s):  
Mark S. Williamson ◽  
Chad W. Thackeray ◽  
Peter M. Cox ◽  
Alex Hall ◽  
Chris Huntingford ◽  
...  
Keyword(s):  

Author(s):  
Nicholas J. Lutsko ◽  
Max Popp ◽  
Robert H. Nazarian ◽  
Anna Lea Albright

2021 ◽  
Author(s):  
Yuanfang chai ◽  
Wouter R. Berghuijs ◽  
Yao Yue ◽  
Thomas A.J. Janssen ◽  
Han Dolman

2021 ◽  
Author(s):  
Nicholas Lutsko ◽  
Max Popp ◽  
Robert H. Nazarian ◽  
Anna Lea Albright

2021 ◽  
Author(s):  
Benjamin M. Sanderson ◽  
Angeline Pendergrass ◽  
Charles D. Koven ◽  
Florent Brient ◽  
Ben B. B. Booth ◽  
...  

Abstract. Studies of emergent constraints have frequently proposed that a single metric alone can constrain future responses of the Earth system to anthropogenic emissions. The prevalence of this thinking has led to literature and messaging which is sometimes confusing to policymakers, with a series of studies over the last decade making confident, yet contradictory, claims on the probability bounds of key climate variables. Here, we illustrate that emergent constraints are more likely to occur where the variance across an ensemble of climate models of both observable and future climate arises from common structural assumptions and few degrees of freedom. Such cases are likely to occur when processes are represented in a common, oversimplified fashion throughout the ensemble, about which we have the least confidence in performance out of sample. We consider these issues in the context of a number of published constraints, and argue that the application of emergent constraints alone to estimate uncertainties in unknown climate responses can potentially lead to bias and overconfidence in constrained projections. Together with statistical robustness and plausibility of mechanism, assessments of climate responses must include multiple lines of evidence to identify biases that arise from common oversimplified modeling assumptions which impact both present and future climate simulations in order to mitigate against the influence of common structural biases.


2020 ◽  
Vol 11 (4) ◽  
pp. 1233-1258
Author(s):  
Manuel Schlund ◽  
Axel Lauer ◽  
Pierre Gentine ◽  
Steven C. Sherwood ◽  
Veronika Eyring

Abstract. An important metric for temperature projections is the equilibrium climate sensitivity (ECS), which is defined as the global mean surface air temperature change caused by a doubling of the atmospheric CO2 concentration. The range for ECS assessed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report is between 1.5 and 4.5 K and has not decreased over the last decades. Among other methods, emergent constraints are potentially promising approaches to reduce the range of ECS by combining observations and output from Earth System Models (ESMs). In this study, we systematically analyze 11 published emergent constraints on ECS that have mostly been derived from models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) project. These emergent constraints are – except for one that is based on temperature variability – all directly or indirectly based on cloud processes, which are the major source of spread in ECS among current models. The focus of the study is on testing if these emergent constraints hold for ESMs participating in the new Phase 6 (CMIP6). Since none of the emergent constraints considered here have been derived using the CMIP6 ensemble, CMIP6 can be used for cross-checking of the emergent constraints on a new model ensemble. The application of the emergent constraints to CMIP6 data shows a decrease in skill and statistical significance of the emergent relationship for nearly all constraints, with this decrease being large in many cases. Consequently, the size of the constrained ECS ranges (66 % confidence intervals) widens by 51 % on average in CMIP6 compared to CMIP5. This is likely because of changes in the representation of cloud processes from CMIP5 to CMIP6, but may in some cases also be due to spurious statistical relationships or a too small number of models in the ensemble that the emergent constraint was originally derived from. The emergently- constrained best estimates of ECS also increased from CMIP5 to CMIP6 by 12 % on average. This can be at least partly explained by the increased number of high-ECS (above 4.5 K) models in CMIP6 without a corresponding change in the constraint predictors, suggesting the emergence of new feedback processes rather than changes in strength of those previously dominant. Our results support previous studies concluding that emergent constraints should be based on an independently verifiable physical mechanism, and that process-based emergent constraints on ECS should rather be thought of as constraints for the process or feedback they are actually targeting.


Sign in / Sign up

Export Citation Format

Share Document