Millennial-scale variability in Antarctic Circumpolar Current and its impacts during the last glacial cycle

Author(s):  
Shuzhuang Wu ◽  
Frank Lamy ◽  
Gerhard Kuhn ◽  
Lester Lembke-Jene ◽  
Xu Zhang ◽  
...  

<p>The Antarctic Circumpolar Current (ACC) is the largest current system in the world, linking the Pacific, Atlantic and Indian Ocean basins. However, the variability of the ACC, which plays a fundamental role on global ocean circulation and climate variability, is still poorly constrained. This information is crucial for understanding the role of the ACC on global ocean circulation in response to global warming. Here, we reconstruct changes in the ACC over the past 155,000 years based on sediment grain size variations recorded in a highly-resolved marine sedimentary record from the central Drake Passage near the Polar Front. Our results show significant changes in the ACC during the last glacial cycle and a remarkable boundary between the glacial and interglacial periods. Substantial decreases (~33% to ~47%) in the ACC flow speed from interglacial to glacial period, which corroborates and extends results of previous studies along the subantarctic northern limit of the ACC into the central Drake Passage. This strong variation of ACC likely plays a significant role in regulating Pacific-Atlantic water mass exchange via the “cold water route” and could significantly affect the Atlantic Meridional Overturning Circulation. Superimposed on these glacial-interglacial changes, we found strong millennial-scale variations in ACC current speed, increasing in amplitude close to full glacial conditions. We hypothesise that the central ACC increases its sensitivity to Southern Hemisphere millennial-scale climates oscillations, likely associated with westerlies’ wind stress and Antarctic sea ice extent once glacial conditions fully formed.</p>

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuzhuang Wu ◽  
Lester Lembke-Jene ◽  
Frank Lamy ◽  
Helge W. Arz ◽  
Norbert Nowaczyk ◽  
...  

AbstractThe Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage in vicinity of the modern Polar Front over a complete glacial-interglacial cycle (i.e., the past 140,000 years), based on sediment grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with weakened current strength during glacials and a stronger circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We infer that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations modulated Pacific-Atlantic water exchange via the “cold water route” and potentially affected the Atlantic Meridional Overturning Circulation and marine carbon storage.


1992 ◽  
Vol 338 (1285) ◽  
pp. 259-267 ◽  

Circum-Antarctic marine sediments contain a record of past climate and Southern Ocean circulation that both complements and considerably extends the record in the continental ice. Variations in primary biological production, reflecting changes in sea-ice cover and sea surface temperature, in bottom current strength and the size of the grounded continental ice sheet, all contribute to changes in sediment characteristics, in a record extending back m any million years. It is possible to assess both the value of the proxy record in Antarctic sediments, and the validity of the analogue approach to understanding climate change, by focusing on the last glacial cycle and, for comparison, on earlier periods that were significantly different: the Pliocene before 3 Ma ago that could provide an analogue for global warming, and the Oligocene before there was an Antarctic Circumpolar Current.


2020 ◽  
Author(s):  
Shuzhuang Wu ◽  
Lester Lembke-Jene ◽  
Frank Lamy ◽  
Helge Arz ◽  
Norbert Nowaczyk ◽  
...  

Abstract The Antarctic Circumpolar Current (ACC) plays a crucial role in global ocean circulation by fostering deep-water upwelling and formation of new water masses. On geological time-scales, ACC variations are poorly constrained beyond the last glacial. Here, we reconstruct changes in ACC strength in the central Drake Passage over the past 140,000 years, based on grain-size and geochemical characteristics. We found significant glacial-interglacial changes of ACC flow speed, with reduced ACC intensity during glacials and a more vigorous circulation in interglacials. Superimposed on these orbital-scale changes are high-amplitude millennial-scale fluctuations, with ACC strength maxima correlating with diatom-based Antarctic winter sea-ice minima, particularly during full glacial conditions. We hypothesize that the ACC is closely linked to Southern Hemisphere millennial-scale climate oscillations, amplified through Antarctic sea ice extent changes. These strong ACC variations regulated Pacific-Atlantic water exchange via the “cold water route” and affected the Atlantic Meridional Overturning Circulation and marine carbon storage.


2013 ◽  
Vol 7 (2) ◽  
pp. 113-116 ◽  
Author(s):  
I. N. McCave ◽  
S. J. Crowhurst ◽  
G. Kuhn ◽  
C-D. Hillenbrand ◽  
M. P. Meredith

Boreas ◽  
2020 ◽  
Author(s):  
Tatiana A. Evstigneeva ◽  
Marina V. Cherepanova ◽  
Sergey A. Gorbarenko ◽  
Xuefa Shi ◽  
Alexander A. Bosin ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuzhuang Wu ◽  
Lester Lembke-Jene ◽  
Frank Lamy ◽  
Helge W. Arz ◽  
Norbert Nowaczyk ◽  
...  

2020 ◽  
Author(s):  
Marleen Lausecker ◽  
Freya Hemsing ◽  
Thomas Krengel ◽  
Julius Förstel ◽  
Andrea Schröder-Ritzrau ◽  
...  

<p>The Last Glacial Maximum (LGM) is marked by significant cooling of the global ocean, which was recently estimated to 2.6°C using noble gases trapped in ice cores (1). This cooling is not equally distributed throughout the world oceans, since global ocean circulation models predict regional temperature anomalies during the LGM of up to 7°C (annually and zonally averaged) when compared to modern interior ocean temperature (2). The oceans deep interior thus became haline stratified (3) due to the drop in temperature to near freezing and the global increase in salinity from ice sheet growth. In contrast to a deepening of the modern thermocline as a result of anthropogenic global warming, cooling causes the thermocline to rise in the sub-tropics as more polar waters enter the mid-depth ocean.</p><p>Here we present glacial thermocline temperature reconstructions since the LGM based on the Li/Mg ratio in aragonite skeletons of precisely dated cold-water corals. Corals have been collected from 300-1000m water depths from sites in the northern and southern Atlantic (62°N to 25°S) and demonstrate synchronous 5 - 7°C glacial cooling, and a dramatic shoaling of the thermocline. Through the deglaciation the warming of the upper thermocline ocean occurs early in the southern hemisphere followed by fluctuating warming and thermocline deepening in the northern Hemisphere, which supports the oceanic climate seesaw proposed by Stocker and Johnson in 2003 (4). We thus propose dramatic changes in export of polar waters towards the Equator and augmented subsurface ocean stratification leading to a mostly polar Atlantic with a shallow permanent thermocline. This shoaling possibly increased the rate of nutrient recycling causing higher biological surface ocean activity and the cooling promoted carbon storage. During the glacial, we assume an atmospheric forcing, such as equatorward displacement of the Hadley circulation, to steer the glacial polar water advance as mid-depth boundary currents in the northern and southern hemisphere to effectively spread the cold water through the entire mid-depth Atlantic.</p><p>References:</p><ol><li>Bereiter et al.: Mean global ocean temperatures during the last glacial transition. Nature <strong>553</strong>, 39-44 (2018).</li> <li>Ballarotta et al.: Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?, Clim. Past <strong>9</strong>, 2669-2686 (2013).</li> <li>Adkins et al.: The Salinity, Temperature, and d18O of the Glacial Deep Ocean. Science <strong>298</strong>, 1769-1773 (2002).</li> <li>Stocker and Johnsen: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography <strong>18</strong>, 1087 (2003).</li> </ol>


Sign in / Sign up

Export Citation Format

Share Document