circulation changes
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 82)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Eilat Elbaum ◽  
Chaim I Garfinkel ◽  
Ori Adam ◽  
Efrat Morin ◽  
Dorita Rostkier-Edelstein ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1699
Author(s):  
Tao Xian ◽  
Jingwen Xia ◽  
Wei Wei ◽  
Zehua Zhang ◽  
Rui Wang ◽  
...  

This review provides a comprehensive coverage of changes of the Hadley Cell extent and their impacts on the weather, climate, and society. The theories predicting the Hadley Cell width are introduced as a background for the understanding of the circulation changes and the metrics used for detection. A variety of metrics derived from various data sources have been used to quantify the Hadley Cell width. These metrics can be classified as dynamical, hydrological, thermal, and chemical metrics, based on the properties of the variables used. The dynamical metrics have faster trends than those based on thermal or hydrological metrics, with the values exceeding 1 degree per decade. The hydrological metric edge poleward trends were found a slightly faster expansion in the Northern Hemisphere than its southern counterpart. The chemical metrics show a poleward trend of more than 1 degree per decade in both hemispheres. We also suggest a few reasons for the discrepancy among trends in Hadley Cell expansion found in previous studies. Multiple forcings have been found responsible for the expansion, which seems to be more attributed to the natural variability than anthropogenic forcing. Validation of the scaling theories by the trends in Hadley Cell width suggests that theories considering the extratropical factor would be better models for predicting the Hadley Cell width changes. The Hadley Cell has an impact on different atmospheric processes on varying spatio-temporal scales, ranging from weather to climate, and finally on society. The remaining questions regarding Hadley Cell climate are briefly summarized at the end.


2021 ◽  
Author(s):  
Stefan Brönnimann ◽  
Peter Stucki ◽  
Jörg Franke ◽  
Veronika Valler ◽  
Yuri Brugnara ◽  
...  

Abstract. European flood frequency and intensity change on a multidecadal scale. Floods were more frequent in the 19th (Central Europe) and early 20th century (Western Europe) than during the mid-20th century and again more frequent since the 1970s. The causes of this variability are not well understood and the relation to climate change is unclear. Palaeoclimate studies from the northern Alps suggest that past flood-rich periods coincided with cold periods. In contrast, some studies suggest that more floods might occur in a future, warming world. Here we reconcile the apparent contradiction by addressing and quantifying the contribution of atmospheric processes to multidecadal flood variability. For this, we use long series of annual peak streamflow, daily weather data, reanalyses, and reconstructions. We show that both changes in atmospheric circulation and moisture content affected multidecadal changes of annual peak streamflow in Central and Western Europe over the past two centuries. We find that during the 19th and early 20th century, atmospheric circulation changes led to high peak values of moisture flux convergence. The circulation was more conducive to strong and long-lasting precipitation events than in the mid-20th century. These changes are also partly reflected in the seasonal mean circulation and reproduced in atmospheric model simulations, pointing to a possible role of oceanic variability. For the period after 1980, increasing moisture content in a warming atmosphere led to extremely high moisture flux convergence. Thus, the main atmospheric driver of flood variability changed from atmospheric circulation variability to water vapour increase.


2021 ◽  
Author(s):  
Stefan Brönnimann ◽  
Peter Stucki ◽  
Jörg Franke ◽  
Veronika Valler ◽  
Yuri Brugnara ◽  
...  

Author(s):  
Pedro Herrera‐Lormendez ◽  
Nikolaos Mastrantonas ◽  
Hervé Douville ◽  
Andreas Hoy ◽  
Jörg Matschullat

2021 ◽  
pp. 1-60
Author(s):  
J. I. Robson ◽  
L. J. Wilcox ◽  
N. Dunstone

Abstract This study broadly characterises and compares the key processes governing internal AMV in two resolutions of HadGEM3-GC3.1: N216ORCA025, corresponding to ~ 60km in the atmosphere and 0.25° in the ocean, and N96ORCA1 (~ 135km / 1°). Both models simulate AMV with a timescale of 60-80 years, which is related to low frequency ocean and atmosphere circulation changes. In both models, ocean heat transport convergence dominates polar and subpolar AMV, whereas surface heat fluxes associated with cloud changes drive subtropicalAMV. However, details of the ocean circulation changes differ between the models. In N216 subpolar subsurface density anomalies propagate into the subtropics along the western boundary, consistent with the more coherent circulation changes and widespread development of SST anomalies. In contrast, N96 subsurface density anomalies persist in the subpolar latitudes for longer, so circulation anomalies and the development of SST anomalies are more centred there. The drivers of subsurface density anomalies also differ between models. In N216, the NAO is the dominant driver, while upper-ocean salinity-controlled density anomalies that originate from the Arctic appear to be the dominant driver in N96. These results further highlight that internal AMV mechanisms are model dependent and motivate further work to better understand and constrain the differences.


2021 ◽  
Vol 9 ◽  
Author(s):  
Denise Tyemi Fukai ◽  
Anna Beatriz Jones Oaquim ◽  
Mauro Cirano

The ocean is one of the main components of the climate system. It distributes and absorbs heat to regulate climate at different time scales. Temperature and salinity (saltiness) control the density of ocean water. Differences in water density are important for ocean circulation—they are responsible for generating some currents of water that move through the ocean. An important part of ocean circulation is called thermohaline circulation. Thermohaline circulation absorbs, stores, and transfers heat around the world. Changes in the temperature or salinity of ocean waters can affect thermohaline circulation, so climate change may also alter this circulation. Changes in water circulation also impact the ocean’s chemistry and the organisms that live in the ocean. First, we will explain how ocean circulation happens, and then we will look at how climate change can affect it.


2021 ◽  
Vol 21 (19) ◽  
pp. 15299-15308
Author(s):  
Liang Guo ◽  
Laura J. Wilcox ◽  
Massimo Bollasina ◽  
Steven T. Turnock ◽  
Marianne T. Lund ◽  
...  

Abstract. Despite local emission reductions, severe haze events remain a serious issue in Beijing. Previous studies have suggested that both greenhouse gas increases and aerosol decreases are likely to increase the frequency of weather patterns conducive to haze events. However, the combined effect of atmospheric circulation changes and aerosol and precursor emission changes on Beijing haze remains unclear. We use the Shared Socioeconomic Pathways (SSPs) to explore the effects of aerosol and greenhouse gas emission changes on both haze weather and Beijing haze itself. We confirm that the occurrence of haze weather patterns is likely to increase in future under all SSPs and show that even though aerosol reductions play a small role, greenhouse gas increases are the main driver, especially during the second half of the 21st century. However, the severity of the haze events decreases on decadal timescales by as much as 70 % by 2100. The main influence on the haze itself is the reductions in local aerosol emissions, which outweigh the effects of changes in atmospheric circulation patterns. This demonstrates that aerosol reductions are beneficial, despite their influence on the circulation.


Author(s):  
Stergios Misios ◽  
Matthew Kasoar ◽  
Elliott Kasoar ◽  
Lesley Gray ◽  
Joanna D Haigh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document