Poroelastic aspects in geothermics

Author(s):  
Bianca Kretz ◽  
Willi Freeden ◽  
Volker Michel

<p>The aspect of poroelasticity is anywhere interesting where a solid material and a fluid come into play and have an effect on each other. This is the case in many applications and we want to focus on geothermics. It is useful to consider this aspect since the replacement of the water in the reservoir below the Earth's surface has an effect on the sorrounding material and vice versa. The underlying physical processes can be described by partial differential equations, called the quasistatic equations of poroelasticity (QEP). From a mathematical point of view, we have a set of three (for two space and one time dimension) partial differential equations with the unknowns u (displacement) and p (pore pressure) depending on the space and the time.</p><p>Our aim is to do a decomposition of the data given for u and p in order that we can see underlying structures in the different decomposition scales that cannot be seen in the whole data.<br>For this process, we need the fundamental solution tensor of the QEP (cf. [1],[5]).<br>That means we assume that we have given data for u and p (they can be obtained for example by a method of fundamental solutions, cf. [1]) and want to investigate a post-processing method to these data. Here we follow the basic approaches for the Laplace-, Helmholtz- and d'Alembert equation (cf. [2],[4],[6]) and the  Cauchy-Navier equation as a tensor-valued ansatz (cf. [3]). That means we want to modify our elements of the fundamental solution tensor in such a way that we smooth the singularity concerning a parameter set τ=(τ<sub>x</sub>,τ<sub>t</sub>). <br>With the help of these modified functions, we construct scaling functions which have to fulfil the properties of an approximate identity.<br>They are convolved with the given data to extract more details of u and p.</p><p><strong>References</strong></p><p>[1] M. Augustin: A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs, PhD Thesis, University of Kaiserslautern, 2015, Birkhäuser, New York, 2015.<br>[2] C. Blick, Multiscale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion, PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, 2015.<br>[3] C. Blick, S. Eberle, Multiscale density decorrelation by Cauchy-Navier wavelets, Int. J. Geomath. 10, 2019, article 24.<br>[4] C. Blick, W. Freeden, H. Nutz: Feature extraction of geological signatures by multiscale gravimetry. Int. J. Geomath. 8: 57-83, 2017.<br>[5] A.H.D. Cheng and E. Detournay: On singular integral equations and fundamental solutions of poroelasticity. Int. J. Solid. Struct. 35, 4521-4555, 1998.<br>[6] W. Freeden, C. Blick: Signal decorrelation by means of multiscale methods, World of Mining, 65(5):304-317, 2013.<br><br></p>

2021 ◽  
Author(s):  
Bianca Kretz ◽  
Willi Freeden ◽  
Volker Michel

<p>For geothermal purposes (heat and electricity generation) it is necessary to have an aquifer from which the contained hot water can be lifted by drilling. The exchange of the hot water against some cooled off water has an effect on the surrounding material and displacement of the material has an influence on the pore pressure and the water. Poroelasticity can model these influencing effects by partial differential equations.</p><p>We want to apply poroelasticity in geothermal research by so-called multiscale modelling. Scaling functions and wavelets are constructed with the help of the fundamental solutions. A related method has been previously used for the Laplace, the Helmholtz and the d'Alembert equation (cf. [2],[4],[5]) as well as for the Cauchy-Navier equation, where the latter requires a tensor-valued ansatz (cf. [3]). We pursue this concept to develop such an approach for poroelasticity, where a fundamental solution tensor is known (cf. [1]).</p><p>The aim of this multiscale modelling is to convolve the constructed scaling functions with the data of the displacement $u$ and the pressure $p$. With this, we have the opportunity to visualize structures in the data that cannot be seen in the whole data. Especially, the difference of the convolution of two consecutive scaling functions is expected to reveal detail structures.</p><p>For the theoretical part, we can show that the scaling functions fulfill the property of an approximate identity. Furthermore, with numerical results we want to show the decomposition.</p><p><strong>References</strong></p><p>[1] M. Augustin: A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs, PhD Thesis, University of Kaiserslautern, 2015, Birkhäuser, New York, 2015.</p><p>[2] C. Blick, Multiscale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion, PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, 2015.</p><p>[3] C. Blick, S. Eberle, Multiscale density decorrelation by Cauchy-Navier wavelets, Int. J. Geomath. 10, 2019, article 24.</p><p>[4] C. Blick, W. Freeden, H. Nutz: Feature extraction of geological signatures by multiscale gravimetry. Int. J. Geomath. 8: 57-83, 2017.</p><p>[5] W. Freeden, C. Blick: Signal decorrelation by means of multiscale methods, World of Mining, 65(5):304--317, 2013.<br><br></p>


2014 ◽  
Vol 69 (12) ◽  
pp. 725-732 ◽  
Author(s):  
Andrew G. Johnpillai ◽  
Fazal M. Mahomed ◽  
Saeid Abbasbandy

AbstractWe firstly show how one can use the invariant criteria for a scalar linear (1+1) parabolic partial differential equations to perform reduction under equivalence transformations to the first Lie canonical form for a class of brain tumor models. Fundamental solution for the underlying class of models via these transformations is thereby found by making use of the well-known fundamental solution of the classical heat equation. The closed-form solution of the Cauchy initial value problem of the model equations is then obtained as well. We also demonstrate the utility of the invariant method for the extended form of the class of brain tumor models and find in a simple and elegant way the possible forms of the arbitrary functions appearing in the extended class of partial differential equations. We also derive the equivalence transformations which completely classify the underlying extended class of partial differential equations into the Lie canonical forms. Examples are provided as illustration of the results.


2019 ◽  
Vol 15 (2) ◽  
pp. 317-336 ◽  
Author(s):  
Tarun Kansal

PurposeThe purpose of this paper to construct the fundamental solution of partial differential equations in the generalized theory of thermoelastic diffusion materials with double porosity.Design/methodology/approachThe paper deals with the study of pseudo oscillations in the generalized theory of thermoelastic diffusion materials with double porosity.FindingsThe paper finds the fundamental solution of partial differential equations in terms of elementary functions.Originality/valueAssuming the displacement vector, volume fraction fields, temperature change and chemical potential functions in terms of oscillation frequency in the governing equations, pseudo oscillations have been studied and finally the fundamental solution of partial differential equations in case of pseudo oscillations in terms of elementary functions has been constructed.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341004 ◽  
Author(s):  
CSABA GÁSPÁR

A special regularization method based on higher-order partial differential equations is presented. Instead of using the fundamental solution of the original partial differential operator with source points located outside of the domain, the original second-order partial differential equation is approximated by a higher-order one, the fundamental solution of which is continuous at the origin. This allows the use of the method of fundamental solutions (MFS) for the approximate problem. Due to the continuity of the modified operator, the source points and the boundary collocation points are allowed to coincide, which makes the solution process simpler. This regularization technique is generalized to various problems and combined with the extremely efficient quadtree-based multigrid methods. Approximation theorems and numerical experiences are also presented.


Sign in / Sign up

Export Citation Format

Share Document