Turbulent Plasma Jet Fronts and Related Ion Acceleration

Author(s):  
Louis Richard ◽  
Yuri Khotyaintsev ◽  
Daniel Graham ◽  
Olivier Le Contel ◽  
Ian Cohen ◽  
...  

<p>We investigate an earthward bursty bulk flow (BBF) observed by the Magnetospheric Multiscale (MMS) spacecraft in the Earth’s magnetotail (X<sub>GSM</sub> ~ -23.88 R<sub>E</sub>, Y<sub>GSM</sub> ~ 6.72 R<sub>E</sub>, Z<sub>GSM </sub>~ 4.06 R<sub>E)</sub>. At  the leading edge of the BBF we observe a complex magnetic field structure. In particular, within this region we identify multiple dipolarization fronts (DFs) and large amplitude oscillations of the magnetic field <em>B<sub>X</sub></em>, which correspond to a long wavelength current sheet flapping motion. Within the DFs, we observe increased fluxes of energetic ions and electrons. We investigate the trapping of the ions between two consecutive DFs. We discuss the ion acceleration mechanism and the adiabaticity of the ion energisation process.</p>

The magnetic field generated in the core of the Earth is often represented by spherical harmonics of the magnetic potential. It has been found from looking at the equations of spherical harmonics, and from studying the values of the spherical harmonic coefficients derived from data from Magsat, that this is an unsatisfactory way of representing the core field. Harmonics of high degree are characterized by generally shorter wavelength expressions on the surface of the Earth, but also contain very long wavelength features as well. Thus if it is thought that the higher degree harmonics are produced by magnetizations within the crust of the Earth, these magnetizations have to be capable of producing very long wavelength signals. Since it is impossible to produce very long wavelength signals of sufficient amplitude by using crustal magnetizations of reasonable intensity, the separation of core and crustal sources by using spherical harmonics is not ideal. We suggest that a better way is to use radial off-centre dipoles located within the core of the Earth. These have several advantages. Firstly, they can be thought of as modelling real physical current systems within the core of the Earth. Secondly, it can be shown that off-centred dipoles, if located deep within the core, are more effective at removing long wavelength signals of potential or field than can be achieved by using spherical harmonics. The disadvantage is that it is much more difficult to compute the positions and strengths of the off-centred dipole fields, and much less easy to manipulate their effects (such as upward and downward continuation). But we believe, along with Cox and Alldredge & Hurwitz, that the understanding that we might obtain of the Earth’s magnetic field by using physically reasonable models rather than mathematically convenient models is very important. We discuss some of the radial dipole models that have been proposed for the nondipole portion of the Earth’s field to arrive at a model that agrees with observations of secular variation and excursions.


1971 ◽  
Vol 6 (1) ◽  
pp. 1-17 ◽  
Author(s):  
W. Pilipp ◽  
H. J. Völk

Transverse waves and instabilities propagating along the magnetic field in a homogeneous plasma are discussed analytically and numerically for frequencies of the order of the ion cyclotron frequency and below. The free energy driving the instabilities is assumed to be provided by thermal anisotropies, with the parallel temperature exceeding the perpendicular temperature, a situation appropriate to the solar wind near the earth and to the downstream conditions in collisionless shocks propagating approximately parallel to the magnetic field. It is shown that in the case where the ion β is of order one the long wavelength Firehose instability is not stabilized by finite Larmor radius effects, but that for smaller wavelengths it goes over smoothly into the resonant proton mode, discussed by Kennel & Scarf (1968).


Sign in / Sign up

Export Citation Format

Share Document