finite larmor radius
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 19)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Yihao Duan ◽  
Yong Xiao ◽  
Zhihong Lin

Abstract Gyro-average is a crucial operation to capture the essential finite Larmor radius effect (FLR) in gyrokinetic simulation. In order to simulate strongly shaped plasmas, an innovative multi-point average method based on non-orthogonal coordinates has been developed to improve the accuracy of the original multi-point average method in gyrokinetic particle simulation. This new gyro-average method has been implemented in the gyrokinetic toroidal code (GTC). Benchmarks have been carried out to prove the accuracy of this new method. In the limit of concircular tokamak, ion temperature gradient (ITG) instability is accurately recovered for this new method and consistency is achieved. The new gyro-average method is also used to solve the gyrokinetic Poisson equation, and its correctness has been confirmed in the long wavelength limit for realistic shaped plasmas. The improved GTC code with the new gyro-average method has been used to investigate the ITG instability with EAST magnetic geometry. The simulation results show that the correction induced by this new method in the linear growth rate is more significant for short wavelength modes where the finite Larmor radius (FLR) effect becomes important. Due to its simplicity and accuracy, this new gyro-average method can find broader applications in simulating the shaped plasmas in realistic tokamaks.


2021 ◽  
Vol 7 (4) ◽  
pp. 35-69
Author(s):  
Dmitri Klimushkin ◽  
Pavel Mager ◽  
Maksim Chelpanov ◽  
Danila Kostarev

The paper reviews the current state of the problem of interaction between long-period ultra-low-frequency (ULF) waves and high-energy particles. We consider elements of the theory of energy exchange between waves and particles, particle transport across magnetic shells under the influence of the electromagnetic field of a wave, the acceleration of radiation belt particles by both resonant and non-resonant mechanisms. We examine the mechanisms of generation of azimuthally-small-scale ULF waves due to instabilities arising from the wave–particle resonance. The cases of Alfvén, drift-compressional, and drift-mirror waves are analyzed. It is noted that due to the lack of a detailed theory of drift-mirror modes, the possibility of their existence in the magnetosphere cannot be taken as a proven fact. We summarize experimental data on the poloidal and compression ULF waves generated by unstable populations of high-energy particles. We investigate the mechanisms of modulation of energetic particle fluxes by ULF waves and possible observational manifestations of such modulation. Methods of studying the structure of waves across magnetic shells by recording fluxes of resonant particles with a finite Larmor radius are discussed.


2021 ◽  
Vol 7 (4) ◽  
pp. 33-66
Author(s):  
Dmitri Klimushkin ◽  
Pavel Mager ◽  
Maksim Chelpanov ◽  
Danila Kostarev

The paper reviews the current state of the problem of interaction between long-period ultra-low-frequency (ULF) waves and high-energy particles. We consider elements of the theory of energy exchange between waves and particles, particle transport across magnetic shells under the influence of the electromagnetic field of a wave, the acceleration of radiation belt particles by both resonant and non-resonant mechanisms. We examine the mechanisms of generation of azimuthally-small-scale ULF waves due to instabilities arising from the wave–particle resonance. The cases of Alfvén, drift-compressional, and drift-mirror waves are analyzed. It is noted that due to the lack of a detailed theory of drift-mirror modes, the possibility of their existence in the magnetosphere cannot be taken as a proven fact. We summarize experimental data on the poloidal and compression ULF waves generated by unstable populations of high-energy particles. We investigate the mechanisms of modulation of energetic particle fluxes by ULF waves and possible observational manifestations of such modulation. Methods of studying the structure of waves across magnetic shells by recording fluxes of resonant particles with a finite Larmor radius are discussed.


2021 ◽  
Vol 61 (10) ◽  
pp. 106024
Author(s):  
Yu Wang ◽  
Tianchun Zhou ◽  
Xiaogang Wang

2021 ◽  
Vol 16 ◽  
pp. 110-119
Author(s):  
Pardeep Kumar ◽  
Sumit Gupta

The effect of finite Larmor radius of the ions on thermal convection of a plasma is investigated. The case with vertical magnetic field is discussed. Following linear stability theory and normal mode analysis method, the dispersion relation is obtained. It is found that the presence of finite Larmor radius and magnetic field introduces oscillatory modes in the system which were, otherwise, non-existent in their absence. When the instability sets in as stationary convection, finite Larmor radius is found to have a stabilizing effect. Medium permeability has a destabilizing (or stabilizing) effect and the magnetic field has a stabilizing (or destabilizing) effect under certain conditions in the presence of finite Larmor radius effect whereas in the absence of finite Larmor radius effect, the medium permeability and the magnetic field have destabilizing and stabilizing effects, respectively. The sufficient conditions for the non-existence of overstability are also obtained.


2021 ◽  
Vol 16 ◽  
pp. 68-78
Author(s):  
Pardeep Kumar ◽  
Gursharn Jit Singh

The thermal convection of a plasma in porous medium is investigated to include simultaneously the effect of rotation and the finiteness of the ion Larmor radius (FLR) in the presence of a vertical magnetic field. Following linear stability theory and normal mode analysis method, the dispersion relation is obtained. It is found that the presence of a uniform rotation, finite Larmor radius and magnetic field introduces oscillatory modes in the system which were, otherwise, non-existent in their absence. When the instability sets in as stationary convection, finite Larmor radius, rotation, medium permeability and magnetic field are found to have stabilizing (or destabilizing) effects under certain conditions. In the absence of rotation, finite Larmor radius has stabilizing effect on the thermal instability of the system whereas the medium permeability and the magnetic field may have stabilizing or destabilizing effect under certain conditions. The conditions κ<[ε+(1-ε) (ρ_S C_S)/(ρ_0 C)]η and κ<(ε^2 [ε+(1-ε) (ρ_S C_S)/(ρ_0 C)]ν)/(P^2 [εP{√U (x-2)+√(T_(A_1 ) )}^2-2Q_1 ] ) are the sufficient conditions for non-existence of overstability, the violation of which does not necessary involve an occurrence of overstability.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
G. Miloshevich ◽  
D. Laveder ◽  
T. Passot ◽  
P. L. Sulem

A Hamiltonian two-field gyrofluid model for kinetic Alfvén waves (KAWs) in a magnetized electron–proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develop when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be non-local and the ratio $\chi _f$ of the wave period to the characteristic nonlinear time at the driving scale affects some of its properties. For example, at small values of $\chi _f$ , parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small $\chi _f$ , leading to an inverse cascade. For $\beta _e$ smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher $\beta _e$ , the ratio of the KAW to the Alfvén frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.


2020 ◽  
Author(s):  
Nawapat Kaweeyanun ◽  
Adam Masters ◽  
Xianzhe Jia

&lt;p&gt;Ganymede is the largest moon of Jupiter and the only Solar System moon known to generate a permanent magnetic field. Motions of Jupiter&amp;#8217;s magnetospheric plasma around Ganymede create an upstream magnetopause, where energy flows are thought to be driven by magnetic reconnection and/or Kelvin-Helmholtz Instability (KHI). Previous numerical simulations of Ganymede indicate evidence for transient reconnection events and KHI wave structures, but the natures of both processes remain poorly understood. Here we present an analytical model of steady-state conditions at Ganymede&amp;#8217;s magnetopause, from which we conduct first assessments of reconnection and KHI onset criteria at the boundary. We find that reconnection may occur wherever Ganymede&amp;#8217;s closed magnetic field encounters Jupiter&amp;#8217;s ambient magnetic field, regardless of variations in magnetopause conditions. Unrestricted reconnection onset highlights possibilities for multiple X-lines or widespread transient reconnection at Ganymede. The reconnection rate is controlled by the ambient Jovian field orientation and hence driven by Jupiter&amp;#8217;s rotation. We also determine Ganymede&amp;#8217;s magnetopause conditions to be favorable for KHI wave growths in two confined regions each along a magnetopause flank, both of which grow in area whenever Ganymede moves toward Jupiter&amp;#8217;s magnetospheric current sheet. KHI growth rates are calculated with the Finite Larmor Radius (FLR) effects incorporated and found to be asymmetric favoring the magnetopause flank closest to Jupiter. The significance of KHI wave growth on energy flows at Ganymede&amp;#8217;s magnetopause remains to be investigated. Future progress on both topics is highly relevant for the upcoming JUpiter ICy moon Explorer (JUICE) mission.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document