Numerical simulation of the evening transition in the atmospheric boundary layer using LES and RANS models

Author(s):  
Ekaterina Tkachenko ◽  
Andrey Debolskiy ◽  
Evgeny Mortikov

<div>This study investigates the dynamics of the evening transition in the atmospheric boundary layer (ABL) diurnal cycle, specifically the decay of the turbulent kinetic energy (TKE) taking place there. Generally, the TKE decay is assumed to follow the power law E(t) ~ t<sup>-α,</sup> where E(t) and t are normalized TKE and normalized time, respectively, and the parameter α determines the decay rate. </div><div> <p>Two types of ABL numerical modeling are compared: three-dimensional large-eddy simulation (LES) models and one-dimensional Reynolds-averaged Navier-Stokes (RANS) models. The evening transition is simulated through facilitating the formation of the convective boundary layer (CBL) by having a constant positive surface heat flux, and the subsequent decay of the CBL when the surface heat flux is decreased. </p> <p>Several features of this process have been studied in relative depth, in particular the TKE decay rate at different stages of the evening transition, the sensitivity of the results to the domain size, and the dynamics of the large- and small-scale turbulence during the transition period. LES experiments with different setups were performed, and the results were then compared to those obtained through RANS experiments based on the k-epsilon model (a two-equation model for TKE and dissipation rate, where model constants are chosen to allow for correct simulation of SBL main properties [1], as well as CBL growth rate [2]).</p> <p>This study was funded by Russian Foundation of Basic Research within the project N 20-05-00776 and the grant of the RF President within the MK-1867.2020.5 project.</p> <div>1. Mortikov E. V., Glazunov A. V., Debolskiy A. V., Lykosov V. N., Zilitinkevich S. S. Modeling of the Dissipation Rate of Turbulent Kinetic Energy // Doklady Earth Sciences. 2019. V. 489(2). P. 1440-1443 </div> <p>2. Burchard H. Applied Turbulence Modelling in Marine Waters. Berlin, Germany: Springer, 2002. P. 57-59</p> </div>

2005 ◽  
Vol 116 (2) ◽  
pp. 331-361 ◽  
Author(s):  
Antony Z. Owinoh ◽  
Julian C. R. Hunt ◽  
Andrew Orr ◽  
Peter Clark ◽  
Rupert Klein ◽  
...  

2022 ◽  
Author(s):  
Laura A. Paquin ◽  
Shaun Skinner ◽  
Stuart J. Laurence

2007 ◽  
Vol 85 (8) ◽  
pp. 869-878 ◽  
Author(s):  
A Ishak ◽  
R Nazar ◽  
I Pop

The laminar boundary-layer flow of a micropolar fluid on a fixed or continuously moving flat plate with uniform surface heat flux is investigated. The plate is assumed to move in the same oropposite direction to the free stream. The resulting system of nonlinear ordinary differential equations is solved numerically using the Keller-box method. Numerical results are obtained for the skin-friction coefficient and the local Nusselt number as well as the velocity, microrotation, and temperature profiles for some values of the governing parameters, namely, the velocity ratio parameter, material parameter, and Prandtl number. The results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.PACS No.: 47.15.Cb


Sign in / Sign up

Export Citation Format

Share Document