Pyroxenites of Kukesi Massif, Mirdita Ophiolite – geological record for magmatic system in SSZ environment – preliminary results

Author(s):  
Jakub Mikrut ◽  
Magdalena Matusiak-Małek ◽  
Jacek Puziewicz ◽  
Kujtim Onuzi

<p>Kukesi massif is located in the eastern part of the Mirdita Ophiolite (northern Albania), which marks suture after Neo-Thetyan ocean closure. It is formed of well-preserved mantle and crustal sections which exhibit Supra-Subduction Zone affinity (e.g. Dilek and Furnes 2009, Lithos). Lower part of the mantle section of the Kukesi massif consist mainly of harzburgites, whereas dunites are located close to Moho. Crustal section records transition from lower part formed by peridotites and pyroxenites (so called intermediate zone after Hoxha and Boullier 1995, Tectonophysics) to gabbros. In this study we focus on composition and origin of pyroxenites occurring in the mantle and lower crustal parts of the Kukesi massif.</p><p>In this study we studied 9 samples. They have composition of olivine websterite, clinopyroxenite, orthopyroxenite, hornblende-clinopyroxenite and websterite. Five of the analyzed samples have mantle origin (M): we studied (M)-olivine websterites and (M)-clinopyroxenite from harzburgitic part, as well as two (M)-orthopyroxenitic veins (one with clinopyroxenitic central part - composite vein) with minor amphibole cross-cutting dunites from one locality. From intermediate zone in crustal (C) part we collected (C)-hornblende-clinopyroxenites and (C)-websterite. </p><p>Clinopyroxene composition is homogeneous in (M)-olivine-websterites (Mg#=84.5-87 and 88.8-90.5; Al=0.07-0.1 and 0.05-0.07, respectively), (M)-clinopyroxenite (Mg#=84-86, Al=0.04-0.08), (C)-hornblende-clinopyroxenites (Mg#=88.5-91, Al=0.08-0.12a.p.f.u.) and (C)-websterite (Mg#=87-88; Al=0.13-0.16a.p.f.u.). It differs widely between (M)-orthopyroxenitic veins: from Mg#=85-94 and Al=0.02-0.08 a.p.f.u  in clinopyroxenitic part of composite vein to Mg#=93.6-95 and Al=0.01-0.03 in the purely orthopyroxenitic one. Orthopyroxene from two samples of  (M)-olivine websterites have either Mg#=83 and Al~0.07 a.p.f.u (Fo<sup>olivine</sup>=81.5) or Mg#=87  and Al~0.04 a.p.f.u (Fo<sup>olivine</sup>=86). Orthopyroxene composition in composite(M)-vein varies in wide ranges (Mg#=83-89; Al=0.04-0.08 a.p.f.u.); the other vein is homogeneous (Mg#=90-91, Al=0.02-0.03 a.p.f.u, Fo<sup>olivine</sup>=86.8-90); in (C)-websterite orthopyroxene has Mg#=82.4-84 and Al=0.12-0.14 a.p.f.u. Amphibole has composition of tremolite-actinolite. Spinel, where present, is highly chromian (Cr#=0.59-0.80).</p><p>Clinopyroxene is LREE-depleted in most of the samples, the (La/Lu)<sub>N</sub>=0.03-0.08. It is also LREE-depleted in (M)-clinopyroxenite ((La/Lu)<sub>N</sub>=0.05-0.23), but the contents of trace elements are higher than in other samples (eg. Lu<sub>N</sub>=0.79-2.75 vs. 0.40-0.85). In (M)-veins the LREE contents are approximately at primitive mantle level ((La/Lu)<sub>N</sub>=0.28-1.66).  Clinopyroxene in all samples has positive Th-U, Pb and Sr anomalies and negative Ta and Zr anomalies, but concentrations of trace elements is significantly higher in (M) clinopyroxenite and veins.</p><p>The presence of tremolite and actinolite points to a retrogressive metamorphism which affected the rocks. The LREE-depleted nature of clinopyroxene forming all the pyroxenites and presence of orthopyroxene  point to crystallization of the rocks from tholeiitic melt, but variations in Mg# and REE content in clinopyroxene may reflect formation either from different generations of melts or from melts fractionated due to reactive percolation.  Variations in composition of the parental melts is visible even in a scale of one outcrop, which is demonstrated by (M)-orthopyroxenite veins with various modal composition and mineral major and trace elements compositions.</p><p>This study was financed from scientific funds for years 2018-2022 as a project within program “Diamond Grant” (DI 024748).</p>

2019 ◽  
Vol 64 (3) ◽  
pp. 237-262
Author(s):  
M. L. Tolstykh ◽  
M. M. Pevzner ◽  
V. B. Naumov ◽  
A. D. Babansky

This paper presents the results of a study of melt inclusions in plagioclase, amphibole and pyroxene from Ichinsky volcano’s tephras of different age. Two types of melts have been identified, distinguished by different concentrations of potassium (K2O). Major and trace elements’ composition of these melts indicates that magma mixing was the dominating process in the Ichinsky magmatic system.


2007 ◽  
Vol 144 (5) ◽  
pp. 867-882 ◽  
Author(s):  
MUSA ALPASLAN

Continental basalts ranging in age from 16.5 to 19.08 Ma crop out throughout the northern part of the Arabian plate. The basalts have distinctive petrographic characteristics such as rounded and skeletal olivine phenocrysts with abundant melt inclusions, implying the mixing of two distinct magmas. All of the analysed basalts are tholeiitic in composition. The presence of quartz xenocrysts with clinopyroxene rims in some samples indicates that crustal assimilation was probably an important process during magma ascent to the surface, and low Mg number and high SiO2 contents of the basalts clearly show that they have experienced fractional crystallization as well as crustal contamination. Variations of the major and trace elements versus MgO show that olivine+clinopyroxene+plagioclase were the main fractionating minerals. In terms of incompatible trace elements, the basalts have OIB-like signatures with a slight depletion at Nb–Ta on primitive-mantle-normalized diagrams. The basalts have slightly LREE enriched patterns with La/YbN = 5.5 to 6.7. La/Nb ratios are close to unity, suggesting the melts may have originated in the asthenospheric mantle. Partial melting modelling based on REE data imply that the melts were not produced from a single mantle source depth, which is either purely a spinel- or garnet-peridotite end member. The samples lie on a binary mixing line between low-degree melts (<5%) from garnet-peridotite and higher-degree melts (>10%) from spinel-peridotite sources on a plot of La/Yb v. Dy/Yb, requiring interaction of melts derived from both garnet- and spinel-peridotite fields. Melts originating from both sources were initially tapped by distinct magma chambers, which subsequently hybridized into a single flow. Hybridized magma ascended to the surface along Neogene strike-slip faults, which are linked to the Dead Sea Fault Zone.


2018 ◽  
Author(s):  
Zoltán Kis ◽  
Katalin Gméling ◽  
Tímea Kocsis ◽  
János Osán ◽  
Mihály András Pocsai ◽  
...  

We present precise analysis of major and trace elements of the humic acid. We used three different element analytical techniques in our investigations as prompt-gamma activation analysis (PGAA), neutron activation analysis (NAA) and X-ray fluorescence (XRF) analysis was carried out. We identified 42 elements in our sample.


2021 ◽  
Vol 170 ◽  
pp. 109595
Author(s):  
Wael M. Badawy ◽  
Octavian G. Duliu ◽  
Hussein El Samman ◽  
Atef El-Taher ◽  
Marina V. Frontasyeva

Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105438
Author(s):  
Karina L. Lecomte ◽  
Cecilia V. Echegoyen ◽  
Paula A. Vignoni ◽  
Kateřina Kopalová ◽  
Tyler J. Kohler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document