parental melts
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 2)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1410
Author(s):  
Pavel A. Serov

This paper continues the Sm-Nd isotope geochronological research carried out at the two largest Paleoproterozoic ore complexes of the northeastern Baltic Shield, i.e., the Cu-Ni-Cr Monchegorsk and the Pt-Pd Fedorovo-Pansky intrusions. These economically significant deposits are examples of layered complexes in the northeastern part of the Fennoscandian Shield. Understanding the stages of their formation and transformation helps in the reconstruction of the long-term evolution of ore-forming systems. This knowledge is necessary for subsequent critical metallogenic and geodynamic conclusions. We applied the Sm-Nd method of comprehensive age determination to define the main age ranges of intrusion. Syngenetic ore genesis occurred 2.53–2.85 Ga; hydrothermal metasomatic ore formation took place 2.70 Ga; and the injection of additional magma batches occurred 2.44–2.50 Ga. The rock transformation and redeposited ore formation at 2.0–1.9 Ga corresponded to the beginning of the Svecofennian events, widely presented on the Fennoscandian Shield. According to geochronological and Nd-Sr isotope data, rocks of the Monchegorsk and the Fedorovo-Pansky complexes seemed to have an anomalous mantle source in common with Paleoproterozoic layered intrusions of the Fennoscandian Shield (enriched with lithophile elements, εNd values vary from −3.0 to +2.5 and ISr 0.702–0.705). The data obtained comply with the known isotope-geochemical and geochronological characteristics of ore-bearing layered intrusions in the northeastern Baltic Shield. An interaction model of parental melts of the Fennoscandian layered intrusions and crustal matter shows a small level of contamination within the usual range of 5–10%. However, the margins of the Monchetundra massif indicate a much higher level of crustal contamination caused by active interaction of parental magmas and host rock.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1277
Author(s):  
Zhengxin Yin ◽  
Weiping Wang ◽  
Liang Chen ◽  
Zhengyuan Li ◽  
Qiang Liu ◽  
...  

We present geological, bulk-rock geochemical and Sr–Nd–Hf isotopic data for mafic rocks from the West Philippine Basin (WPB). These mafic rocks comprise pillow basalts characterized by a vesicular structure. The mid-ocean ridge basalt (MORB)-normalized trace element patterns of basalts from the study area display depletions in Nb. In addition, the chondrite-normalized lanthanide patterns of basalts from the WPB are characterized by significant depletions in the light lanthanides and nearly flat Eu to Lu segments. The investigated rocks have initial 87Sr/86Sr ratios (87Sr/86Sr(i)) of 0.703339–0.703455 and high εNd(t) values (8.0 to 8.7). Furthermore, basalts from the WPB have 176Hf/177Hf ratios that range from 0.28318 to 0.28321 and high εHf(t) from 15.2 to 16.3. Semi-quantitative modeling demonstrates that the parental melts of basalts from the study area were derived by ~20% adiabatic decompression melting of a rising spinel-bearing peridotite source. The Sr–Nd–Hf isotopic compositions of basalts from the WPB indicate that their parental magmas were derived from an upper mantle reservoir possessing the so-called Indian-type isotopic anomaly. Interpretation of the isotopic data suggests that the inferred mantle source was most likely influenced by minor inputs of a sediment melt derived from a downgoing lithospheric slab. Collectively, the petrographic and geochemical characteristics of basalts from the study area are analogous to those of mafic rocks with a back-arc basin (BAB)-like affinity. As such, the petrogenesis of basalts from the WPB can be linked to upwelling of an Indian-type mantle source due to lithospheric slab subduction that was followed by back-arc spreading.


Geology ◽  
2021 ◽  
Author(s):  
Teresa Ubide ◽  
Patricia Larrea ◽  
Laura Becerril ◽  
Carlos Galé

Ocean-island basalts (OIBs) are considered to be messengers from the deep mantle, yet the filtering effect of the plumbing systems that bring OIB melts to the surface remains poorly assessed. We investigated volcanic products from El Hierro island (Canary Islands) from textural and chemical perspectives. The majority of geochemical data cluster at relatively fractionated basaltic compositions of 5 wt% MgO. Compositions ≥10 wt% MgO are porphyritic whole rocks that accumulate mafic minerals. Near-primary melts do not erupt. Instead, we show that carrier melts (crystal-free whole rocks, glasses, and melt inclusions) are consistently buffered to low-MgO compositions during passage through the plumbing system. We tested our model of melt fractionation and crystal accumulation on a global compilation of OIBs. Similar to El Hierro, the majority of data cluster at evolved compositions of 5 wt% MgO (alkaline) to 7 wt% MgO (tholeiitic). Modeling the fractionation of OIB parental melts, we show that with 50% crystallization, OIB melts reach 5 wt% MgO with reduced density, increased volatile content, and overall low viscosity, becoming positively buoyant relative to wall rocks and highly eruptible when reaching volatile saturation at depths around the crust-mantle boundary. Under these conditions, 5 wt% MgO OIB “sweet spot” melts are propelled to the surface and erupt carrying an assortment of recycled crystals. This mechanism is consistent with the petrography and chemistry of erupted products and suggests OIB volcanoes are dominated by low-MgO basaltic melts.


2021 ◽  
Author(s):  
P. C. Hayman ◽  
I. H. Campbell ◽  
R.A.F. Cas ◽  
R. J. Squire ◽  
D. Doutch ◽  
...  

Abstract Magnetite-bearing granophyre and quartz dolerite are the evolved fractions of differentiated dolerite (diabase) sills and are an important host to Archean gold deposits because they are chemical traps for orogenic fluids. Despite their economic importance, there is a poor understanding of how melt composition, crystal fractionation, sill geometry, and depth of emplacement increase the volume of host rock that is most favorable for gold precipitation during orogenesis. We use drill core logging, whole-rock geochemistry, magnetic susceptibility, gold assay, and thermodynamic modeling data from 11 mineralized and unmineralized ca. 2.7 Ga differentiated dolerites in the Eastern Goldfields superterrane (Yilgarn craton, Western Australia) to better understand the influence of igneous and emplacement processes on gold prospectivity. Orogenic gold favors differentiated dolerites, derived from iron-rich parental magmas, that crystallize large volumes of magnetite-bearing quartz dolerite (>25% total thickness). Mineralized sills are commonly >150 m thick and hosted by thick and broadly coeval sedimentary sequences. Sill thickness is an important predictor for gold prospectivity, as it largely controls cooling rate and hence fractionation. The parental melts of gold mineralized sills fractionated large amounts of clinopyroxene and plagioclase (possibly up to 50%) at depth before emplacement in the shallow crust. A second fractionation event at shallow levels (<3 km) operated both vertically and laterally, resulting in an antithetic relationship between quartz (magnetite) dolerite and cumulates (pyroxenites and peridotites). By comparison with younger mafic sills emplaced in synsedimentary basins, we argue that the geometry of these high-level sills was more irregular than the often-assumed tabular form. Any irregularities in the lower sill margin act as traps for early formed (dense) ferromagnesian minerals, now represented by pyroxene and peridotite cumulates. In contrast, irregularities in the upper sill margin trap the buoyant fractionated liquids when the sill is more crystalline, through magma flow on the scale of <1 km. Sills derived from iron-poor melts are rarely mineralized and, all else being equal, probably have to be thicker than Fe-rich sills to be similarly prospective for orogenic gold. Finally, we provide a list of quantifiable parameters that can be incorporated into an exploration program targeting differentiated dolerites that host orogenic gold.


Author(s):  
Azam Soltanmohammadi ◽  
Michel Grégoire ◽  
Georges Ceuleneer ◽  
Mathieu Benoit ◽  
L Paul Bédard ◽  
...  

Abstract Abundant silica-undersaturated potassic lavas are found in the centre of the Turkish-Iranian plateau (NW Iran) as flows, pillows and dykes. They display abundant zoned clinopyroxene macrocrysts and xenoliths of igneous cumulates. We determined four types of zoned crystals (Type-I, -II, -III and -IV) on the basis of their composition and zoning patterns. Use of in situ compositional data, together with whole-rock major and trace elements and the isotopic signatures of the host lavas provided evidence for the derivation of the different types of zoned clinopyroxenes from at least two contrasting parental melts. Our findings are consistent with an origin of the ultrapotassic and sodic alkaline melts from the deep-seated compaction pockets inferred from our previous studies of the alkaline magmatism throughout the Turkish-Iranian plateau. The ultrapotassic melt, which accumulated at the top of the compaction pockets, eventually ponded close to the spinel–garnet mantle transition and generated colourless antecrysts (Type-I and Type-II) and clinopyroxenite cumulates. When the compaction pocket impinged on the continental lithosphere, interstitial melts segregated and flowed inside dykes where grass green antecrysts (Type-III) and zoned phenocrysts (Type-IVa) crystallized from a melt having a geochemical signature of sodic alkaline melt. Later, at the crustal level, melt crystallization processes produced Type-IVb zoned phenocrysts. Our results are at odds with the paradigm of potassic magmas in NW Iran being derived strictly from a single mantle source.


2021 ◽  
Author(s):  
Jakub Mikrut ◽  
Magdalena Matusiak-Małek ◽  
Jacek Puziewicz ◽  
Kujtim Onuzi

<p>Kukesi massif is located in the eastern part of the Mirdita Ophiolite (northern Albania), which marks suture after Neo-Thetyan ocean closure. It is formed of well-preserved mantle and crustal sections which exhibit Supra-Subduction Zone affinity (e.g. Dilek and Furnes 2009, Lithos). Lower part of the mantle section of the Kukesi massif consist mainly of harzburgites, whereas dunites are located close to Moho. Crustal section records transition from lower part formed by peridotites and pyroxenites (so called intermediate zone after Hoxha and Boullier 1995, Tectonophysics) to gabbros. In this study we focus on composition and origin of pyroxenites occurring in the mantle and lower crustal parts of the Kukesi massif.</p><p>In this study we studied 9 samples. They have composition of olivine websterite, clinopyroxenite, orthopyroxenite, hornblende-clinopyroxenite and websterite. Five of the analyzed samples have mantle origin (M): we studied (M)-olivine websterites and (M)-clinopyroxenite from harzburgitic part, as well as two (M)-orthopyroxenitic veins (one with clinopyroxenitic central part - composite vein) with minor amphibole cross-cutting dunites from one locality. From intermediate zone in crustal (C) part we collected (C)-hornblende-clinopyroxenites and (C)-websterite. </p><p>Clinopyroxene composition is homogeneous in (M)-olivine-websterites (Mg#=84.5-87 and 88.8-90.5; Al=0.07-0.1 and 0.05-0.07, respectively), (M)-clinopyroxenite (Mg#=84-86, Al=0.04-0.08), (C)-hornblende-clinopyroxenites (Mg#=88.5-91, Al=0.08-0.12a.p.f.u.) and (C)-websterite (Mg#=87-88; Al=0.13-0.16a.p.f.u.). It differs widely between (M)-orthopyroxenitic veins: from Mg#=85-94 and Al=0.02-0.08 a.p.f.u  in clinopyroxenitic part of composite vein to Mg#=93.6-95 and Al=0.01-0.03 in the purely orthopyroxenitic one. Orthopyroxene from two samples of  (M)-olivine websterites have either Mg#=83 and Al~0.07 a.p.f.u (Fo<sup>olivine</sup>=81.5) or Mg#=87  and Al~0.04 a.p.f.u (Fo<sup>olivine</sup>=86). Orthopyroxene composition in composite(M)-vein varies in wide ranges (Mg#=83-89; Al=0.04-0.08 a.p.f.u.); the other vein is homogeneous (Mg#=90-91, Al=0.02-0.03 a.p.f.u, Fo<sup>olivine</sup>=86.8-90); in (C)-websterite orthopyroxene has Mg#=82.4-84 and Al=0.12-0.14 a.p.f.u. Amphibole has composition of tremolite-actinolite. Spinel, where present, is highly chromian (Cr#=0.59-0.80).</p><p>Clinopyroxene is LREE-depleted in most of the samples, the (La/Lu)<sub>N</sub>=0.03-0.08. It is also LREE-depleted in (M)-clinopyroxenite ((La/Lu)<sub>N</sub>=0.05-0.23), but the contents of trace elements are higher than in other samples (eg. Lu<sub>N</sub>=0.79-2.75 vs. 0.40-0.85). In (M)-veins the LREE contents are approximately at primitive mantle level ((La/Lu)<sub>N</sub>=0.28-1.66).  Clinopyroxene in all samples has positive Th-U, Pb and Sr anomalies and negative Ta and Zr anomalies, but concentrations of trace elements is significantly higher in (M) clinopyroxenite and veins.</p><p>The presence of tremolite and actinolite points to a retrogressive metamorphism which affected the rocks. The LREE-depleted nature of clinopyroxene forming all the pyroxenites and presence of orthopyroxene  point to crystallization of the rocks from tholeiitic melt, but variations in Mg# and REE content in clinopyroxene may reflect formation either from different generations of melts or from melts fractionated due to reactive percolation.  Variations in composition of the parental melts is visible even in a scale of one outcrop, which is demonstrated by (M)-orthopyroxenite veins with various modal composition and mineral major and trace elements compositions.</p><p>This study was financed from scientific funds for years 2018-2022 as a project within program “Diamond Grant” (DI 024748).</p>


2021 ◽  
Author(s):  
Mattia Bonazzi ◽  
Antonio Langone ◽  
Simone Tumiati ◽  
Edoardo Dellarole ◽  
Maurizio Mazzucchelli ◽  
...  

<p>Zircon is a common accessory mineral in evolved magmatic rocks and its investigation can provide unevaluable geochronological and geochemical information. The lower continental crust forming the Ivrea-Verbano Zone (IVZ, Southern Alps) locally shows the discordant intrusion of swarms of felsic dykes, which petrology was poorly constrained. Corundum-rich (Crn up to 55 vol.%) felsic dykes were sampled in two different outcrops along the Sabbiola valley (central IVZ). Besides corundum, they consist mainly of sodic plagioclase (An=5-10 %), biotite-siderophyllite, ±K-feldspar and ±hercynite. These dykes intrude granulites and Permian mafic intrusives, showing either pegmatite-like or porphyroclastic textures and contain abundant zircon. Trace elements concentration, as well as the isotopic U-Pb and Lu-Hf compositions of zircons have been determined by LA-ICP-(MC)MS to unravel emplacement ages and nature of parental melts. U-Pb weighted average ages point to Norian emplacement (ca. 224 Ma). Zircons are characterized by very high concentrations in REE, Th, U, Nb and Ta. REE patterns show marked negative Eu anomaly. These data, in association with the enrichments of Na in plagioclases and of Fe in micas and oxides, suggest that the parent melts were extremely evolved differentiates. Porphyroclastic texture developed in the frame of magmatic processes due to volatiles overpressure. Strongly positive Hf<sub>(</sub><sub>t)</sub> values (+13 on average) suggest a derivation of the parental melts from depleted to mildly enriched mantle sources. This observation and the corundum saturation (evidence for low silica activity) point to limited crustal contamination, which was favored by the high eutectic temperature of the host rocks. It is proposed that studied dykes segregated from peraluminous melts produced by exsolution processes affecting volatile-rich differentiates during alkaline magmatism (Bonazzi et al., 2020).</p><p>Triassic magmatic activity is largely documented throughout the Southern Alps, being related to different tectono-magmatic cycles. Nevertheless, before this study, the evidence of Triassic magmatism in IVZ was restricted only in its northernmost tip (Finero area, e.g. Zanetti et al., 2013; Schaltegger et al., 2015). This work provides robust constraints about the transition of the geochemical affinity of Southern Alps magmatism from orogenic-like to anorogenic during Norian, linked to a regional uprising of the asthenosphere and changes of tectonic regime.</p><p> </p><p>References</p><p>Bonazzi, M.; Langone, A.; Tumiati, S.; Dellarole, E.; Mazzucchelli, M.; Giovanardi, T.; Zanetti, A. Mantle-Derived Corundum-Bearing Felsic Dykes May Survive Only within the Lower (Refractory/Inert) Crust: Evidence from Zircon Geochemistry and Geochronology (Ivrea–Verbano Zone, Southern Alps, Italy). Geosciences 2020, 10, 281.</p><p>Schaltegger, U.; Ulianov, A.; Muntener, O.; Ovtcharova, M.; Peytcheva, I.; Vonlanthen, P.; Vennemann, T.; Antognini, M.; Girlanda, F. Megacrystic zircon with planar fractures in miaskite-type nepheline pegmatites formed at high pressures in the lower crust (Ivrea Zone, southern Alps, Switzerland). Am. Miner. 2014, 100, 83–94.</p><p>Zanetti, A.; Mazzucchelli, M.; Sinigoi, S.; Giovanardi, T.; Peressini, G.; Fanning, C.M. SHRIMP U-Pb Zircon Triassic Intrusion Age of the Finero Mafic Complex (Ivrea-Verbano Zone, Western Alps) and its Geodynamic Implications. J. Pet. 2013, 54, 2235–2265.</p>


2021 ◽  
Author(s):  
Nikolai Vladykin ◽  
Igor Ashchepkov ◽  
Irina Sotnikova ◽  
Nikolai Mevedev

<p>The bulk rock and geochemistry of the Kayla and Khatastyr lamproites is similar to other Aldan lamproites and lamprophyres.  The ultramafic varieties are close to cratonic Ol- lamproites and alkaline Al, Si-rich varieties are closer to orogenic type.</p><p>Trace element bulk rock trace element (TRE) spider diagrams show inclined patterns with the LILE, Sr, Pb, U, peaks and Ta, Nb minima suggesting melting of originally depleted metasomatized Phl peridotites and mixed ancient (EMII, Nd, Sr isotopes) source (low crust)  and later olivine and clinopyroxene fractionation. They are dated 132-134 Ma (Late Cretaceous plume) similar to Chompolo lamprophyres and many alkaline complexes.</p><p>Thermobarometry for the deep-seated xenocrysts gives the low temperature and Sp-Gar and Gar facies for Cr- diopsides and chromites. Low - Cr- clinopyroxenes derived from lamproites give hot 90 mw/m<sup>2</sup> advective branches. </p><p>The REE patterns for Cr-diopsides are more inclined for deeper varieties and reveal Ba, Th, U, Sr peaks and minima Ta, Nd and smaller in Zr-Hf. The `low Cr diopsides show flatter REE and HFSE minima TRE patterns of parental melts are lamproitic. Salites reveal hot crust conditions.</p><p>Lamproites melted from Phl peridotite eclogites mixture in the lithosphere base and interacted with mantle beneath Moho.</p><p>The work was supported by the Ministry of Science and Higher Education of the Russian Federation RBRF grants 19-05-00788a, 18-05-00073a;  Government tasks for Institute of Geochemistry SB RAS and Institute of Geology and Mineralogy SB RAS and the governmental assignment in terms of Project IX. 129.1.4</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.4ea3446a7a0068249921161/sdaolpUECMynit/12UGE&app=m&a=0&c=101ace07d05786aa80749a09f997276d&ct=x&pn=gnp.elif&d=1" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.7be3a47a7a0064449921161/sdaolpUECMynit/12UGE&app=m&a=0&c=58a37dd97ea8acf0b318506645b8f918&ct=x&pn=gnp.elif&d=1" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.911e478a7a0063649921161/sdaolpUECMynit/12UGE&app=m&a=0&c=ec045b1e85e57506c9df6f4987365dc2&ct=x&pn=gnp.elif&d=1" alt=""></p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.6b2d469a7a0068749921161/sdaolpUECMynit/12UGE&app=m&a=0&c=db2505c5dc47a12bf5bbe2da42dc4538&ct=x&pn=gnp.elif&d=1" alt=""></p>


Lithos ◽  
2020 ◽  
Vol 370-371 ◽  
pp. 105657
Author(s):  
Alina A. Korneeva ◽  
Nikolai Nekrylov ◽  
Vadim S. Kamenetsky ◽  
Maxim V. Portnyagin ◽  
Dmitry P. Savelyev ◽  
...  

2020 ◽  
Author(s):  
Amanda Ostwald ◽  
Arya Udry ◽  
Juliane Gross ◽  
James Day

Sign in / Sign up

Export Citation Format

Share Document