Implementation of mycorrhizal mechanism into a soil carbon model improves the prediction of long-term processes of plant litter decomposition

Author(s):  
Weilin Huang ◽  
Peter van Bodegom ◽  
Toni Viskari ◽  
Jari Liski ◽  
Nadejda Soudzilovskaia

<p>Mycorrhizae, a plant-fungal symbiosis, is an important contributor to below ground-microbial interactions, and hypothesized to play a paramount role in soil carbon (C) sequestration. Ectomycorrhizae (EM) and arbuscular mycorrhizae (AM) are the two dominant forms of mycorrhizae featured by nearly all Earth plant species. However, the difference in the nature of their contributions to the processes of plant litter decomposition is still understood poorly. Current soil carbon models treat mycorrhizal impacts on the processes of soil carbon transformation as a black box. This retards scientific progress in mechanistic understanding of soil C dynamics.</p><p>We examined four alternative conceptualizations of the mycorrhizal impact on plant litter C transformations, by integrating AM and EM fungal impacts on litter C pools of different recalcitrance into the soil carbon model Yasso15. The best performing concept featured differential impacts of EM and AM on a combined pool of labile C, being quantitatively distinct from impacts of AM and EM on a pool of recalcitrant C.</p><p>Analysis of time dynamics of mycorrhizal impacts on soil C transformations demonstrated that these impacts are larger at the long-term (>2.5yrs) litter decomposition processes, compared to the short-term processes. We detected that arbuscular mycorrhizae controls shorter term decomposition of labile carbon compounds, while ectomycorrhizae dominate the long term decomposition processes of highly recalcitrant carbon elements. Overall, adding our mycorrhizal module into the Yasso model greatly improved the accuracy of the temporal dynamics of carbon sequestration.</p><p>A sensitivity analysis of litter decomposition to climate and mycorrhizal factors indicated that ignoring the mycorrhizal impact on the decomposition leads to an overestimation of climate impacts. This suggests that being co-linear with climate impacts, mycorrhizal impacts could be partly hidden within climate factors in soil carbon models, reducing the capability of such models to mechanistically predict impacts of climate vs vegetation change on soil carbon dynamics.</p><p>Our results provide a benchmark to mechanistic modelling of microbial impacts on soil C dynamics. This work opens new pathways to examining the impacts of land-use change and climate change on plant-microbial interactions and their role in soil C dynamics, allowing the integration of microbial processes into global vegetation models used for policy decisions on terrestrial carbon monitoring.</p>

2021 ◽  
Author(s):  
Weilin Huang ◽  
Peter M. van Bodegom ◽  
Toni Viskari ◽  
Jari Liski ◽  
Nadejda A. Soudzilovskaia

Abstract. Ecosystems dominated by plants featuring ectomycorrhizae (EM) and arbuscular mycorrhizae (AM) promote distinct soil carbon dynamics. AM and EM soil environments can thus have different impacts on litter decomposition. However, current soil carbon models treat mycorrhizal impacts on the processes of soil carbon transformation as a black box. We re-formulated the soil carbon model Yasso15, and incorporated impacts of mycorrhizal vegetation on soil carbon pools of different recalcitrance. We examined alternative conceptualizations of mycorrhizal impacts on transformations of labile and stable carbon, and quantitatively assessed the performance of the selected optimal model in terms of the long-term fate of plant litter. We found that mycorrhizal impacts on pools of labile carbon in the litter are distinct from that on recalcitrant pools. Plant litter of the same chemical composition decomposes slower when exposed to EM-dominated ecosystems compared to AM-dominated ones, and across time, EM-dominated ecosystems accumulate more recalcitrant residues of non-decomposed litter. Overall, adding our mycorrhizal module into the Yasso model improved the accuracy of the temporal dynamics of carbon sequestration predictions. Our results suggest that mycorrhizal impacts on litter decomposition are underpinned by distinct decomposition pathways in AM- and EM-dominated ecosystems. Ignoring mycorrhiza-induced mechanisms will thus lead to an overestimation of climate impacts on decomposition dynamics. Our new model provides a benchmark for mechanistic and quantitative modelling of microbial impact on soil carbon. It helps to determine the relative importance of mycorrhizal associations and climate on organic matter decomposition rate and reduces the uncertainties in estimating soil carbon sequestration.


2020 ◽  
Author(s):  
Chris McCloskey ◽  
Guy Kirk ◽  
Wilfred Otten ◽  
Eric Paterson

<p>Our understanding of soil carbon (C) dynamics is limited; field measurements necessarily conflate fluxes from plant and soil sources and we therefore lack long-term field-scale data on soil C fluxes to use to test and improve soil C models. Furthermore, it is often unclear whether findings from lab-based studies, such as the presence of rhizosphere priming, apply to soil systems in the field. It is particularly important that we are able to understand the roles of soil temperature and moisture, and plant C inputs, as drivers of soil C dynamics in order to predict how changing climate and plant productivity may affect the net C balance of soils. We have developed a field laboratory with which to generate much-needed long-term C flux data under field conditions, giving near-continuous measurements of plant and soil C fluxes and their drivers.</p><p>The laboratory contains 24 0.8-m diameter, 1-m deep, naturally-structured soil monoliths of two contrasting C3 soils (a clay-loam and a sandy soil) in lysimeters. These are sown with a C4 grass (<em>Bouteloua dactyloides</em>), providing a large difference in C isotope signature between C4 plant respiration and C3-origin soil organic matter (SOM) decomposition, which enables clear partitioning of the net C flux. This species is used as a pasture grass in the United States, and regular trimming through the growing season simulates low-intensity grazing. The soil monoliths are fitted with gas flux chambers and connected via an automated sampling loop to a cavity ring-down spectrometer, which measures the concentration and <sup>12</sup>C:<sup>13</sup>C isotopic ratio of CO<sub>2</sub> during flux chamber closure. Depth-resolved measurements of soil temperature and moisture in each monolith are made near-continuously, along with measurements of incoming solar radiation, rainfall, and air temperature a the field site. The gas flux chambers are fitted with removable reflective backout covers allowing flux measurements both incorporating, and in the absence of, photosynthesis.</p><p>We have collected net ecosystem respiration data, measurements of photosynthesis, and recorded potential drivers of respiration over two growing seasons through 2018 and 2019. Through partitioning fluxes between plant respiration and SOM mineralisation we have revealed clear diurnal trends in both plant and soil C fluxes, along with overarching seasonal trends which modify both the magnitude of fluxes and their diurnal patterns. Rates of photosynthesis have been interpolated between measurement periods using machine learning to generate a predictive model, which has allowed us to investigate the effect of plant productivity on SOM mineralisation and assess whether rhizosphere priming can be detected in our system. Through regression analyses and linear mixed effects modelling we have evaluated the roles of soil temperature, soil moisture, and soil N content as drivers of variation in plant and soil respiration in our two contrasting soils. This has shown soil temperature to be the most important control on SOM mineralisation, with soil moisture content playing only a minor role. We have also used our empirical models to suggest how the carbon balance of pasture and grassland soils may respond to warming temperatures.</p>


2015 ◽  
Vol 91 ◽  
pp. 160-168 ◽  
Author(s):  
Damien Finn ◽  
Kathryn Page ◽  
Kerrilyn Catton ◽  
Ekaterina Strounina ◽  
Marco Kienzle ◽  
...  

2009 ◽  
Vol 23 (2) ◽  
pp. 442-453 ◽  
Author(s):  
David A. Wardle ◽  
Richard D. Bardgett ◽  
Lawrence R. Walker ◽  
Karen I. Bonner

2021 ◽  
Vol 125 ◽  
pp. 107554
Author(s):  
Antoine Lecerf ◽  
Aurélie Cébron ◽  
Franck Gilbert ◽  
Michael Danger ◽  
Hélène Roussel ◽  
...  

Ecosystems ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 567-581 ◽  
Author(s):  
Alan Mosele Tonin ◽  
Luiz Ubiratan Hepp ◽  
José Francisco Gonçalves

Sign in / Sign up

Export Citation Format

Share Document