scholarly journals Divergent responses of permafrost peatlands to recent climate change

Author(s):  
Thomas Sim ◽  
Graeme Swindles ◽  
Paul Morris ◽  
Andy Baird ◽  
Claire Cooper ◽  
...  

<p>Permafrost peatlands are found in high-latitude regions and store globally-important amounts of soil organic carbon. These regions are warming at over twice the global average rate, causing permafrost thaw and exposing previously inert carbon to decomposition and emission to the atmosphere as greenhouse gases. However, it is unclear how peatland hydrological behaviour, vegetation structure and carbon balance, and the linkages between them, will respond to permafrost thaw in a warming climate. Here we show that permafrost peatlands follow divergent ecohydrological trajectories in response to recent climate change within the same rapidly warming region (northern Sweden). Whether a site becomes wetter or drier depends on local factors and the autogenic response of individual peatlands. We find that bryophyte-dominated vegetation demonstrates resistance, and in some cases resilience, to climatic and hydrological shifts. Drying at four sites is clearly associated with reduced carbon sequestration, while no clear relationship at wetting sites is observed. We highlight the complex dynamics of permafrost peatlands and warn against an overly-simple approach when considering their ecohydrological trajectories and role as C sinks under a warming climate.   </p>

2007 ◽  
Vol 46 ◽  
pp. 275-282 ◽  
Author(s):  
Keith A. Brugger

AbstractRabots Glaciär and Storglaciären, two small valley glaciers in the Swedish Arctic, have not behaved synchronously in response to recent climate change. Both glaciers advanced late in the 19th century and then began to retreat in response to a ~1˚C warming that occurred around 1910. By the mid-1980s the terminus and volume of Storglaciären had essentially stabilized, so it may have completed its response to the earlier warming. In contrast, ongoing thinning and retreat of Rabots Glaciär are substantial and suggest its response time is considerably longer. A time-dependent numerical model was used to investigate each glacier’s response to perturbations in mass balance. This modeling suggests that, for small perturbations, volume timescales for Storglaciären and Rabots Glaciär are ~125 and ~215 years, respectively. Another measure of response time (i.e. length response time) yields somewhat lower values for each glacier; however, what is significant is that by either measure and accounting for uncertainties, the response time for Rabots Glaciär is consistently about 1.5 times longer than that for Storglaciären. This implies that their non-synchronous behavior is likely due to differences in response times. The latter ultimately result from markedly different longitudinal geometries (particularly near the termini), velocity profiles and specific net balance gradients.


2015 ◽  
Vol 65 (1) ◽  
pp. 4-18 ◽  
Author(s):  
Jonas Bhend ◽  
Penny Whetton

2017 ◽  
Author(s):  
Eric N. Powell ◽  
◽  
Kelsey Kuykendall ◽  
Paula Moreno ◽  
Sara Pace

2015 ◽  
pp. 48-81 ◽  
Author(s):  
Ben Orlove ◽  
Heather Lazrus ◽  
Grete K. Hovelsrud ◽  
Alessandra Giannini

Sign in / Sign up

Export Citation Format

Share Document