A General Solution to the Rank Deficient Integer Least Squares and its Application to GNSS Positioning

Author(s):  
Giulio Tagliaferro

<p>The contribution will present a general solution for the estimation of rank deficient integer parameters. A procedure will be presented that allows the computation of integer estimable function for any integer rank deficient least squares problem. The procedure is then applied to GNSS estimation problems. In the framework of undifferenced and uncombined GNSS models, the specific solution to some rank deficient integer least squares model will be presented, namely: the choice of pivot ambiguities in a network of receivers, GLONASS positioning, codeless positioning in the presence of ionospheric delay, satellite specific pseudorange biases estimation in the presence of ionospheric delay. It will been shown how the developed theory generalize previous results and ad hoc solutions present in the literature. Numerical results from real GNSS data will be presented too.</p>

2021 ◽  
pp. 1-17
Author(s):  
Eyal Waserman ◽  
Sivan Toledo

Abstract This paper presents a formulation of snapshot positioning as a mixed-integer least-squares problem. In snapshot positioning, one estimates a position from code-phase (and possibly Doppler-shift) observations of global navigation satellite system (GNSS) signals without knowing the time of departure (timestamp) of the codes. Solving the problem allows a receiver to determine a fix from short radio-frequency snapshots missing the timestamp information embedded in the GNSS data stream. This is used to reduce the time to first fix in some receivers, and it is used in certain wildlife trackers. This paper presents two new formulations of the problem and an algorithm that solves the resulting mixed-integer least-squares problems. We also show that the new formulations can produce fixes even with huge initial errors, much larger than permitted in Van Diggelen's widely-cited coarse-time navigation method.


Survey Review ◽  
1966 ◽  
Vol 18 (139) ◽  
pp. 214-219
Author(s):  
F. Teixeira de Queiroz

2020 ◽  
pp. 60-73
Author(s):  
Yu V Nemirovskii ◽  
S V Tikhonov

The work considers rods with a constant cross-section. The deformation law of each layer of the rod is adopted as an approximation by a polynomial of the second order. The method of determining the coefficients of the indicated polynomial and the limit deformations under compression and tension of the material of each layer is described with the presence of three traditional characteristics: modulus of elasticity, limit stresses at compression and tension. On the basis of deformation diagrams of the concrete grades B10, B30, B50 under tension and compression, these coefficients are determined by the method of least squares. The deformation diagrams of these concrete grades are compared on the basis of the approximations obtained by the limit values and the method of least squares, and it is found that these diagrams approximate quite well the real deformation diagrams at deformations close to the limit. The main problem in this work is to determine if the rod is able withstand the applied loads, before intensive cracking processes in concrete. So as a criterion of the conditional limit state this work adopts the maximum permissible deformation value under tension or compression corresponding to the points of transition to a falling branch on the deformation diagram level in one or more layers of the rod. The Kirchhoff-Lyav classical kinematic hypotheses are assumed to be valid for the rod deformation. The cases of statically determinable and statically indeterminable problems of bend of the rod are considered. It is shown that in the case of statically determinable loadings, the general solution of the problem comes to solving a system of three nonlinear algebraic equations which roots can be obtained with the necessary accuracy using the well-developed methods of computational mathematics. The general solution of the problem for statically indeterminable problems is reduced to obtaining a solution to a system of three nonlinear differential equations for three functions - deformation and curvatures. The Bubnov-Galerkin method is used to approximate the solution of this equation on the segment along the length of the rod, and specific examples of its application to the Maple system of symbolic calculations are considered.


2020 ◽  
Vol 68 ◽  
pp. 6547-6561
Author(s):  
Mohammad Neinavaie ◽  
Mostafa Derakhtian ◽  
Sergiy A. Vorobyov

Sign in / Sign up

Export Citation Format

Share Document