wireless communications
Recently Published Documents





Zaid Hashim Jaber ◽  
Dheyaa Jasim Kadhim ◽  
Ahmed Sabah Al-Araji

<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks.</span></p>

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Shuncheng Tian ◽  
Xuanming Zhang ◽  
Xin Wang ◽  
Jiaqi Han ◽  
Long Li

Abstract In the last two decades, metamaterials and metasurfaces have introduced many new electromagnetic (EM) theory concepts and inspired contemporary design methodologies for EM devices and systems. This review focuses on the recent advances in metamaterials (MMs) for simultaneous wireless information and power transmission (SWIPT) technology. In the increasingly complex EM world, digital coding and programmable metamaterials and metasurfaces have enabled commercial opportunities with a broad impact on wireless communications and wireless power transfer. In this review, we first introduce the potential technologies for SWIPT. Then, it is followed by a comprehensive survey of various research efforts on metamaterial-based wireless information transmission (WIT), wireless power transmission (WPT), wireless energy harvesting (WEH) and SWIPT technologies. Finally, it is concluded with perspectives on the rapidly growing SWIPT requirement for 6G. This review is expected to provide researchers with insights into the trend and applications of metamaterial-based SWIPT technologies to stimulate future research in this emerging domain.

2022 ◽  
pp. 95-106
Sapna Arora ◽  
Sharad Sharma ◽  
Arun Kumar Rana

2022 ◽  
Vol 71 (2) ◽  
pp. 3293-3318
Hend Ibrahim ◽  
Abeer D. Algarni ◽  
Mahmoud Abdalla ◽  
Walid El-Shafai ◽  
Fathi E. Abd El-Samie ◽  

Sign in / Sign up

Export Citation Format

Share Document