Do Martian slopes with Recurring Slope Lineae (RSL) have a distinct topographic signature?

Author(s):  
Aharon Adam ◽  
Itai Haviv ◽  
Dan G. Blumberg ◽  
Shimrit Maman ◽  
Amit Mushkin

<p>Recurring Slope Lineae (RSL) are dynamic, low-albedo, slope-parallel surface features on Mars that occur mainly on steep (>25°) slopes. RSL typically display seasonal dynamics as they appear during late Martian spring, progressively grow during summer, and subsequently fade as summer ends. RSL formation mechanisms remain under debate with proposed mechanisms involving either water/brines (‘wet theories’) vs. dry granular flows within a surficial dust layer (‘dry theories’). In an attempt to distinguish between plausible RSL mechanisms, this study compares the topographic and morphologic characteristics of hillslopes with and without RSL. We suggest that a distinct topographic signature for RSL hillslopes would argue against the ‘dry’ RSL mechanisms, as RSL dynamics within a thin dust layer are not expected to significantly impact the hillslope-scale topography. In contrast, the presence of fluids on RSL hillslopes could conceivably accelerate rock weathering rates, which in turn may impact the hillslope-scale topography. Our analyses are based on HiRISE, CTX and HRSC digital terrain models (DTMs) together with geomorphic mapping using high-resolution orbital images. We focus on inner crater hillslopes and compare the topographic characteristics of RSL vs. non-RSL slopes. In addition, in order to account for the potential influence of aspect-dependent solar irradiation on hillslope processes, we also applied our analysis on adjacent ‘control’ craters that are devoid of RSL activity. Preliminary results from Palikir (-41.6°/ 202.1°E) and Rauna (35.2°/ 328°E) craters reveal that the topographic slope distribution along crater walls with RSL activity is distinct from the slope distribution along crater walls which are devoid of RSL activity. Our results appear to support increased rock-weathering rates on crater walls that presently experience RSL activity.</p><p> </p><p> </p>

Icarus ◽  
2020 ◽  
Vol 335 ◽  
pp. 113420 ◽  
Author(s):  
David E. Stillman ◽  
Brian D. Bue ◽  
Kiri L. Wagstaff ◽  
Katherine M. Primm ◽  
Tim I. Michaels ◽  
...  

Elements ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 241-246 ◽  
Author(s):  
Stephen Porder

Since land plants emerged from swampy coastlines over 400 million years ago, they have played a fundamental role in shaping the Earth system. Roots and associated fungi increase rock weathering rates, providing access to nutrients, while altering atmospheric CO2. As soils weather, the dissolution of primary minerals forces plants to rely on recycling and atmospheric deposition of rock-derived nutrients. Thus, for many terrestrial ecosystems, weathering ultimately constrains primary production (carbon uptake) and decomposition (carbon loss). These constraints are most acute in agricultural systems, which rely on mined fertilizer rather than the recycling of organic material to maintain production. Humans now mine similar amounts of some elements as weather out of rocks globally. This increase in supply has myriad environmental consequences.


2008 ◽  
Vol 275 (3-4) ◽  
pp. 364-369 ◽  
Author(s):  
Anja Røyne ◽  
Bjørn Jamtveit ◽  
Joachim Mathiesen ◽  
Anders Malthe-Sørenssen

2021 ◽  
Author(s):  
Eric W. Slessarev ◽  
Oliver A. Chadwick ◽  
Noah W. Sokol ◽  
Erin E. Nuccio ◽  
Jennifer Pett-Ridge

AbstractAs rock-derived primary minerals weather to form soil, they create reactive, poorly crystalline minerals that bind and store organic carbon. By implication, the abundance of primary minerals in soil might influence the abundance of poorly crystalline minerals, and hence soil organic carbon storage. However, the link between primary mineral weathering, poorly crystalline minerals, and soil carbon has not been fully tested, particularly at large spatial scales. To close this knowledge gap, we designed a model that links primary mineral weathering rates to the geographic distribution of poorly crystalline minerals across the USA, and then used this model to evaluate the effect of rock weathering on soil organic carbon. We found that poorly crystalline minerals are most abundant and most strongly correlated with organic carbon in geographically limited zones that sustain enhanced weathering rates, where humid climate and abundant primary minerals co-occur. This finding confirms that rock weathering alters soil mineralogy to enhance soil organic carbon storage at continental scales, but also indicates that the influence of active weathering on soil carbon storage is limited by low weathering rates across vast areas.


Sign in / Sign up

Export Citation Format

Share Document