Free surface models of partially molten rock with visco-elasto–plastic rheology: numerical solutions using a staggered-grid finite-difference discretisation 

Author(s):  
Yuan Li ◽  
Adina Pusok ◽  
Dave May ◽  
Richard Katz

<p>It is broadly accepted that magmatism plays a key dynamic role in continental and oceanic rifting. However, these dynamics remain poorly studied, largely due to the difficulty of consistently modelling liquid/solid interaction across the lithosphere. The RIFT-O-MAT project seeks to quantify the role of magma in rifting by using models that build upon the two-phase flow theory of magma/rock interaction. A key challenge is to extend the theory to account for the non-linear rheological behaviour of the host rocks, and investigate processes such as diking, faulting and their interaction. Here we present our progress in consistent numerical modelling of poro-viscoelastic–plastic modelling of deformation with a free surface.</p><p>Failure of rocks (plasticity) is an essential ingredient in geodynamics models because Earth materials cannot sustain unbounded stresses. However, plasticity represents a non-trivial problem even for single-phase flow formulations (Spiegelman et al. 2016). The elastic deformation of rocks can also affect the propagation of internal failure. Furthermore, deformation and plastic failure drives topographic change, which imposes a significant static stress field. Robustly solving a discretised model that includes this physics presents severe challenges, and many questions remain as to effective solvers for these strongly nonlinear systems. </p><p>We present a new finite difference staggered grid framework for solving partial differential equations (FD-PDE) for single-/two-phase flow magma dynamics (Pusok et al., 2020). Staggered grid finite-difference methods are mimetic, conservative, inf-sup stable and with small stencil — thus they are well suited to address these problems. The FD-PDE framework uses PETSc (Balay et al., 2020) and aims to separate the user input from the discretization of governing equations. The core goals for the FD-PDE framework is to allow for extensible development and implement a framework for rigorous code validation. Here, we present simplified model problems using the FD-PDE framework for two-phase flow visco-elasto-plastic models designed to characterise the solution quality and assess both the discretisation and solver robustness. We also present results obtained using the phase-field method (Sun and Beckermann, 2007) for representing the free surface. Verification of the phase-field approach will be shown via simplified problems previously examined in the geodynamics community (Crameri et al, 2012).</p><p>Balay et al. (2020), PETSc Users Manual, ANL-95/11 - Revision 3.13.</p><p>Pusok et al. (2020) https://doi.org/10.5194/egusphere-egu2020-18690 </p><p>Spiegelman et al. (2016) https://doi.org/10.1002/2015GC006228</p><p>Sun and Beckermann (2007) https://doi.org/10.1016/j.jcp.2006.05.025</p><p>Crameri et al. (2012) https://doi.org/10.1111/j.1365-246X.2012.05388.x</p><div> <div><span></span><div></div> </div> <div></div> </div><div> <div><span></span><div></div> </div> <div></div> </div>

2020 ◽  
Author(s):  
Adina E. Pusok ◽  
Dave A. May ◽  
Richard F. Katz

<p>All divergent plate boundaries are associated with magmatism, yet its role in their dynamics and deformation is not known. The RIFT-O-MAT project seeks to understand how magmatism promotes and shapes rifts in continental and oceanic lithosphere by using models that build upon the two-phase flow theory of magma/rock interaction. Numerical models of magma segregation from partially molten rocks are usually based on a system of equations for conservation of mass, momentum and energy. One key challenge of these problems is to compute a mass-conservative flow field that is suitable for advecting thermochemically active material that feeds back on the flow. This feedback tends to destabilise the coupled mechanics+thermochemical solver. </p><p>Staggered grid finite-volume/difference methods are: mimetic (i.e., discrete differential operators mimic the properties of the continuous differential operators); conservative by construction; inf-sup stable and "light weight" (small stencil) thus they are well suited to address these problems. We present a new framework for finite difference staggered grids for solving partial differential equations (FD-PDE) that allows testable and extensible code for single-/two-phase flow magma dynamics. We build the framework using PETSc (Balay et al., 2019) and make use of the new features for staggered grids, such as DMStag. The aim is to separate the user input from the discretization of governing equations, allow for extensible development, and implement a robust framework for testing. Any customized applications can be created easily, without interfering with previous work or tests.</p><p>Here, we present benchmark and performance results with our new FD-PDE framework. In particular, we focus on preliminary results of a two-phase flow mid-ocean ridge (MOR) model with a free surface and extensional boundary conditions. We compare flow calculations with previous work on MORs that either employed two-phase flow dynamics with kinematic boundary conditions (i.e., corner flow, Spiegelman and McKenzie, 1987), or single-phase flow dynamics with free surface (i.e., Behn and Ito, 2008). In the latter case, the effect of magma is parameterised according to a priori expectations of its role. </p><p> </p><p>Balay et al. (2019), PETSc Users Manual, ANL-95/11 - Revision 3.12, 2019.</p><p>Spiegelman and McKenzie (1987), EPSL, 83 (1-4), 137-152.</p><p>Behn and Ito (2008), Geochem. Geophys. Geosyst., 9, Q08O10.</p>


Author(s):  
Mayilvahanan Alagan Chella ◽  
Hans Bihs

Wave breaking is a complex two-phase flow process that strongly influences the air-water interaction. A number of physical processes are involved in the exchange of mass, momentum and energy between air and water interaction during the wave breaking process. In shallow waters, waves undergo different transformation processes such as shoaling, refraction, diffraction and breaking due to their non-linear interaction with the seabed. Thus, the associated hydrodynamics are rather complicated to understand when compared to wave breaking in deep water (Lin, 2008). In the present numerical study, a two phase flow CFD model REEF3D (Bihs et al. 2016) is used to model and investigate the hydrodynamics of spilling and plunging breakers over a slope. An accurate modeling of the wave breaking process is still highly demanding due to the strong non-linear air-water interaction and turbulent production at the free surface. The numerical wave tank is based on the incompressible Reynolds Averaged Navier-Stokes (RANS) equations together with the level set method for free surface and the k-ω model for turbulence (Alagan Chella et al. 2015). The model uses the 5th-order Weighted Essentially Non- Oscillatory (WENO) scheme for the convective discretization and the 3rd-order TVD Runge Kutta Scheme for the time discretization. A staggered grid method is employed in the model in order to achieve a stronger coupling between the pressure and velocity. The model is fully parallelized with the domain decomposition method and MPI (Message passing interface).


1963 ◽  
Vol 3 (02) ◽  
pp. 116-126 ◽  
Author(s):  
J.C. Martin ◽  
D.M. James

Abstract The results are presented of a study of the application of analytical methods to the solution of two phase flow into single wells. Approximate analytical expressions for the pressure distribution in two-phase flow are found for a number of conditions. The results obtained from the analytical solutions are found to be in good agreement with results obtained by finite difference techniques using a high speed digital computer. Mathematical solutions for four sets of boundary conditions are presented. All of these solutions are composed of a short-term transient plus a steady or quasi-steady state. The rates of decay of the short-lived transients are analyzed. It is found that the durations of the short-term transients may be characterized by a parameter defined as the time constant which can be determined from simple relations. It is shown also that if the outer radius is much greater than the radius of the well, the short term transients decay at rates which are proportional to the square of the exterior radius, and the rates of decay are only slightly dependent upon the radius ratio. Numerical solutions based on finite difference techniques are presented for a number of conditions. The numerical solutions are in good agreement with the predictions based on the theoretical analysis for small and moderate drawdowns. Examples involving large drawdowns indicate that the nonlinearities in the equations of flow do not appreciably alter the longevity of the short-term transients. In all cases the time required for the short-term transients to disappear is predicted satisfactorily. Introduction The mechanism by which oil and gas flow into a single well is of vital interest to the petroleum industry. The fundamental equations of two-phase flow which describe this mechanism are nonlinear partial differential equations. Numerical solutions of these equations describing pressure transients have been obtained with the aid of electronic computers. Although solutions obtained in this manner take into account a large number of effects, the reduction of this information to useful generalities is difficult. One method of obtaining generalities is the use of linearized approximations of the nonlinear equations. Since it is possible to obtain explicit solutions of the linearized equation, general properties of the role of pressure in the flow mechanism may be ascertained. Results obtained from this approach are limited to some extent by the linearizing assumptions. The severity of these limitations may be evaluated by comparing solutions of the linear equation with numerical solutions of the more exact nonlinear equations of two-phase flow. In the past considerable amount of work has been devoted to studying pressure build-up using the single-phase flow theory. Unfortunately, most pressure build-up tests involve multiphase flow. A small amount of work has been done studying pressure build-up where the flow is two-phase. The encouraging results of these studies suggest that useful results may be found from additional studies of not only pressure build-up, but also the rapid transients associated with placing a well on production. This paper presents the basic theory of the pressure transients associated with placing a well on production and with closing it in. The paper is concerned chiefly with two-phase compressible flow; however, the results also apply to single-phase flow, The results are based on analytical solutions of the flow equations, and they are verified by numerical solutions using finite difference techniques. Much of the previous work on compressible flow into wells has been confined to single-phase flow. Some work has been done on compressible two-phase steady state flow, and solutions of the equations of flow have been found by finite difference techniques using high-speed computers. Muskat presents some rather general solutions to the equations of single-phase compressible flow into wells. Much work has been done on pressure build-up in wells (see, for example, Refs. 2–6). Almost all of the work on pressure build-up concerns single-phase flow with the exception of Ref. 5 and part of Ref. 2. Some work has been done on pressure fall-off in injection wells. Muskat presents the solution of the equations for radial steady state two-phase compressible flow. SPEJ P. 116^


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Jianjian Xin ◽  
Fulong Shi ◽  
Qiu Jin ◽  
Lin Ma

Abstract A three-dimensional (3D) gradient-augmented level set (GALS) two-phase flow model with a pretreated reinitialization procedure is developed to simulate violent sloshing in a cuboid tank. Based on a two-dimensional (2D) GALS method, 3D Hermite, and 3D Lagrange polynomial schemes are derived to interpolate the level set function and the velocity field at arbitrary positions over a cell, respectively. A reinitialization procedure is performed on a 3D narrow band to treat the strongly distorted interface and improve computational efficiency. In addition, an identification-correction technique is proposed and incorporated into the reinitialization procedure to treat the tiny droplet which can distort the free surface shape, even lead to computation failure. To validate the accuracy of the present GALS method and the effectiveness of the proposed identification-correction technique, a 3D velocity advection case is first simulated. The present method is validated to have better mass conservation property than the classical level set and original GALS methods. Also, distorted and thin interfaces are well captured on all grid resolutions by the present GALS method. Then, sloshing under coupled surge and sway excitation, sloshing under rotational excitation are simulated. Good agreements are obtained when the present wave and pressure results are compared with the experimental and numerical results. In addition, the highly nonlinear free surface is observed, and the relationship between the excitation frequency and the impulsive pressure is investigated.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987173 ◽  
Author(s):  
Liang Dong ◽  
Jiawei Liu ◽  
Houlin Liu ◽  
Cui Dai ◽  
Dmitry Vladimirovich Gradov

In order to reveal the gas–liquid two-phase flow pattern of inverted-umbrella aerator, the high-speed photography technology, particle image velocimetry, and Volume of Fluid model are employed to capture the free-surface dynamics and velocity distribution. The Computational Fluid Dynamics simulations are validated by experimental data and the results are in good agreement with experiment. The simulation results of flow field, streamline distribution, velocity distribution, free-surface deformation, and turbulence kinetic energy are analyzed at in time and at radial profiles sampled at several vertical positions. Back surface of each blade revealed the area of low-pressure, which can drag air into water directly from surface and thus enhance liquid aeration and oxygenation capacity. Lifting capacity of the inverted-umbrella aerator is enough to get the liquid at the bottom of the aeration tank accelerated toward liquid surface generating the hydraulic jump. As a result, liquid phase splashes capture portions of air promoting aeration of the solution. A clear circulation whirlpool is formed during the process. The circulation whirlpool starts at the bottom of the impeller moving upward along the plate until the outer edge of the impeller, which is close to the free surface. The circulation whirlpool indicates that the inverted-umbrella aerator plays a significant role in shallow aeration. The turbulence intensity created by the impeller gradually reduces with depth. The position ( z = 0.65 H) is the watershed in the tank. The oxygen mass transfer mainly occurs in the layer above watershed.


2018 ◽  
Vol 108 ◽  
pp. 169-180 ◽  
Author(s):  
Nazia Talat ◽  
Boštjan Mavrič ◽  
Grega Belšak ◽  
Vanja Hatić ◽  
Saša Bajt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document