film flow
Recently Published Documents


TOTAL DOCUMENTS

1459
(FIVE YEARS 223)

H-INDEX

48
(FIVE YEARS 11)

Author(s):  
Yan Ren ◽  
Wei-hua Cai ◽  
Yi-qiang Jiang ◽  
Wei-dong Wu ◽  
Qi-guo Yang ◽  
...  

2022 ◽  
Author(s):  
Hameed Ashraf ◽  
Abida Parveen ◽  
Hamood Ur Rehman ◽  
Muhammad Imran Asjad ◽  
Bander N. Almutairi ◽  
...  

Abstract This article addresses the analysis of the uniform film thickness and stationary points forthe Carreau thin fluid film flow. The flow of fluid on a vertically upward moving cylinder takesplace in the presence of a surface tension gradient. The resulting non-linear and inhomogeneousordinary differential equation is solved for the series form solution using Adomian decompositionmethods (ADM). Stokes number St, inverse capillary number C, Weissenberg number W e andfluid behavior index n emerged as flow control parameters. The analysis showed that thepositions of stationary points transferred towards the surface of the cylinder by the increase ofSt and C while towards the fluid-air interface by the increase of n. W e delineated vice versaeffects on positions of stationary points for the shear thickening fluid film and shear thinningfluid film. The width of uniform film thickness reduces by an increment in the St and Cwhereas it increases by an increment in the n. The width of shear thickening uniform filmthickness increases whilst shear thinning uniform film thickness decreases as the W e increases. A comparison between the linearly viscous fluid and Carreau fluid is also made.


2022 ◽  
Vol 34 (1) ◽  
pp. 012109
Author(s):  
Z. Wang ◽  
C. Zhang ◽  
H. Xia ◽  
Q. Xie ◽  
W. Deng

2022 ◽  
Vol 11 (1) ◽  
pp. 463-472
Author(s):  
Elham Alali ◽  
Ahmed M. Megahed

Abstract The problem of non-Newtonian Casson thin film flow of an electrically conducting fluid on a horizontal elastic sheet was studied using suitable dimensionless transformations on equations representing the problem. The thin film flow and heat mechanism coupled with mass transfer characteristics are basically governed by the slip velocity, magnetic field, and the dissipation phenomenon. The present numerical analysis by the shooting method was carried out to study the detailed, fully developed heat and mass transfer techniques in the laminar thin film layer by solving the competent controlling equations with eight dominant parameters for the thin liquid film. Additionally, the predicted drag force via skin-friction coefficient and Nusselt and Sherwood numbers were correlated. In view of the present study, a smaller magnetic parameter or a smaller slip velocity parameter exerts very good influence on the development of the liquid film thickness for the non-Newtonian Casson model. Furthermore, a boost in the parameter of unsteadiness causes an increase in both velocity distribution and concentration distribution in thin film layer while an increase in the same parameter causes a reduction in the film thickness. Likewise, the present results are observed to be in an excellent agreement with those offered previously by other authors. Finally, some of the physical parameters in this study, which can serve as improvement factors for heat mass transfer and thermophysical characteristics, make nanofluids premium candidates for important future engineering applications.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7798
Author(s):  
Naveed Ahmad Khan ◽  
Fahad Sameer Alshammari ◽  
Carlos Andrés Tavera Romero ◽  
Muhammad Sulaiman ◽  
Seyedali Mirjalili

In this paper, a novel soft computing technique is designed to analyze the mathematical model of the steady thin film flow of Johnson–Segalman fluid on the surface of an infinitely long vertical cylinder used in the drainage system by using artificial neural networks (ANNs). The approximate series solutions are constructed by Legendre polynomials and a Legendre polynomial-based artificial neural networks architecture (LNN) to approximate solutions for drainage problems. The training of designed neurons in an LNN structure is carried out by a hybridizing generalized normal distribution optimization (GNDO) algorithm and sequential quadratic programming (SQP). To investigate the capabilities of the proposed LNN-GNDO-SQP algorithm, the effect of variations in various non-Newtonian parameters like Stokes number (St), Weissenberg number (We), slip parameters (a), and the ratio of viscosities (ϕ) on velocity profiles of the of steady thin film flow of non-Newtonian Johnson–Segalman fluid are investigated. The results establish that the velocity profile is directly affected by increasing Stokes and Weissenberg numbers while the ratio of viscosities and slip parameter inversely affects the fluid’s velocity profile. To validate the proposed technique’s efficiency, solutions and absolute errors are compared with reference solutions calculated by RK-4 (ode45) and the Genetic algorithm-Active set algorithm (GA-ASA). To study the stability, efficiency and accuracy of the LNN-GNDO-SQP algorithm, extensive graphical and statistical analyses are conducted based on absolute errors, mean, median, standard deviation, mean absolute deviation, Theil’s inequality coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE). Statistics of the performance indicators are approaching zero, which dictates the proposed algorithm’s worth and reliability.


2021 ◽  
Author(s):  
W. N. Adyani W. Razak ◽  
Nor Idah Kechut ◽  
Edward Andrews ◽  
Samuel Krevor

Abstract Spatial image resolution has limited previous attempts to characterize the thin film flow of oil sandwiched in-between gas and water in a three-phase fluid system This paper describes how a systematically designed displacement experiment can produce imagery to define the film flow process in a 3D pore space of water-wet sandstone rocks. We image multiphase flow at the pore scale through three displacement experiments conducted on water-wet outcrop rock with variable spreading tendencies. The experiment has been formulated to observe the relationship between fluid spreading, phase saturations, and pore-scale displacement mechanisms. We provide exhaustive evidence of the three-phase fluid configurations that serve as a proxy mechanism assisting the fluid displacement process in a three-phase system, which includes the oil sandwiches in-between water and gas, the flow of oil via clay fabrics, and the double-displacement process that generates oil and water film in 3D pore spaces. Further, we show evidence that the stable thin-oil film has enhanced the gas trapping mechanism in the water-wet rocks. We observed that the oil layer had covered the isolated and trapped gas blobs, enhancing their stability. As a result, the trapped gas in the positive and zero spreading systems is slightly higher than in the negative spreading system due to a stable oil film. We analyze the Euler characteristic of the individual fluid phases and the interface pair of the fluids during waterflooding, gas injection, and chase water flooding. The comparison of the Euler characteristic for the connected and disconnected fluid phases between three different spreading systems (i.e., positive, zero, and negative) shows that the oil layer's connectivity is highest in the positive spreading system and lowest in the negative spreading system. The oil layer in the positive spreading system is also thicker than in the negative spreading system.


2021 ◽  
Vol 42 (12) ◽  
pp. 2206-2215
Author(s):  
Steffen Cychy ◽  
Sebastian Lechler ◽  
Zijian Huang ◽  
Michael Braun ◽  
Ann Cathrin Brix ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document