Rapid, paced metamorphism of blueschists from laser-based Lu-Hf garnet-domain geochronology and LA-ICMPS trace element mapping

Author(s):  
Lorraine Tual ◽  
Matthijs Smit ◽  
Jamie Cutts ◽  
Ellen Kooijman ◽  
Melanie Kielman-Schmitt ◽  
...  

<p>Unravelling the timing and rate of subduction-zone metamorphism requires linking the composition of petrogenetic indicator minerals in blueschists and eclogites to time. Garnet is a key mineral in this regard, not in the least because it best records P-T conditions and changes therein and can be dated, using either Lu-Hf or Sm-Nd chronology. Bulk-grain garnet ages are the norm and can provide important and precise time constraints on reactions across both facies. Domain dating, i.e., dating of individual growth zones, moves beyond that. Domain dating by combining mechanical micro-milling and Sm-Nd chronology yielded important constraints on garnet-growth and fluid-release rates for blueschists (e.g., Dragovic et al., 2015). Developing this method for Lu-Hf chronology and, importantly, for "common-sized" garnet (≤1 cm) provides an important opportunity to further explore the potential of this approach.</p><p>We combined a low-loss micro-sampling technique in laser cutting with a refined Lu-Hf routine to precisely date multiple growth zones of a sub-cm-sized garnet in a blueschist. The targeted grain from a glaucophane-bearing micaschist from Syros Island, Greece, was chemically characterized by major- and trace-element mapping (EPMA, LA-ICPMS) and five zones were extracted using a laser mill. The three core and inner mantle zones are chemically comparable and identical in age within a 0.1 Myr precision (2σ). The outer two zones are chemically distinct and are resolvably younger (0.2-0.8 Myr). The timing of these two major garnet-growth episodes, together with the variations in trace-element chemistry, constrain important fluid-release reactions, such as chloritoid-breakdown. The data show that the integral history of garnet growth in subduction zones may be extremely short (<1 Myr), but may, even in that short timeframe, consist of multiple short pulses. Garnet-forming reactions clearly are localized and, thus, associated with focussed high-flux fluid flow. Beyond subduction-zone processes, our new protocol for zoned garnet Lu-Hf geochronology of "common-sized" garnet opens possibilities for constraining the causes and rates of garnet growth and in turn, the pace of tectonic processes in general.</p><p> </p><p><sub><em>Dragovic, B., Baxter, E.F. and Caddick, M.J., 2015. Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece. Earth and Planetary Science Letters, 413, pp.111-122.</em></sub></p>

2021 ◽  
Author(s):  
Lorraine Tual ◽  
Matthijs Smit ◽  
Jamie Cutts ◽  
Ellen Kooijman ◽  
Melanie Kielman-Schmitt ◽  
...  

Eos ◽  
2020 ◽  
Vol 101 ◽  
Author(s):  
Ikuko Wada ◽  
Leif Karlstrom

Scientists from different disciplines are working together to identify common challenges in and techniques for modeling fluid migration associated with subduction zone processes.


2021 ◽  
Author(s):  
Daniela Rubatto ◽  
Lanari Pierre ◽  
Marcel Burger ◽  
Bodo Hattendorf ◽  
Gunnar Schwarz ◽  
...  

<p>Garnet is one of the most robust and ubiquitous minerals that record element zoning during crustal metamorphism. In addition to major element distribution, zoning in trace elements can provide a wealth of information to document the changing conditions of garnet growth and modification. Trace element distribution in garnet grains was mapped in 2D in thin section with laser ablation inductively coupled plasma time of flight mass spectrometry (LA-ICP-TOFMS) and conventional LA-ICP-MS to achieve a lateral resolution of 15-5 µm and limits of detection for the heavy rare earth elements (REE) down to 0.2 µg/g (Rubatto et al. 2020).</p><p>In granulite-facies garnet, major elements show diffusional resetting, whereas trace elements still largely document the growth history. Enrichment of trace elements in the garnet mantle is attributed to the consumption of biotite (V, Cr) and the dissolution of zircon (Zr) and monazite (Y+REE) in the coexisting melt. Lu is notably enriched in the garnet mantle with implications for geochronology. The gradual zoning of Y+HREE between mantle and core is reconcilable with diffusion over ~200 µm in 10 My at temperatures of 750–800°C</p><p>In amphibolite facies garnet, Y+REE trace element zoning closely matches the growth zoning in Ca with no notable diffusive modification. Y+REE zoning is dominated by Rayleigh fractionation in the core and in the outer zones it shows annuli that mark the sporadic breakdown of accessory phases.</p><p>Garnet in eclogite facies samples that underwent fluid-rock interaction show growth zoning in major and trace elements, with local oscillations and sectors. In certain samples, the overall distribution of REE can be reconciled with diffusion-limited uptake. Where garnet displays fluid-related veinlets, visible in major elements, that cross-cut the primary growth zoning, the regular Y+REE and Cr growth zoning is not affected by the veinlets. This indicates that the veinlets did not form by a crack-seal mechanism but are rather related to a selective replacement process.</p><p> </p><p><strong>References </strong></p><p>Rubatto D, Burger M, Lanari P, Hattendorf B, Schwarz G, Neff C, Keresztes Schmidt P, Hermann J, Vho A, Günther D (2020) Identification of growth mechanisms in metamorphic garnet by high-resolution trace element mapping with LA-ICP-TOFMS. Contrib Mineral Petrol 175:61 doi.org/10.1007/s00410-020-01700-5</p>


2018 ◽  
Vol 24 ◽  
pp. 93-107
Author(s):  
Anna Cerchiari ◽  
Rina Fukuchi ◽  
Baiyuan Gao ◽  
Kan-Hsi Hsiung ◽  
Dominik Jaeger ◽  
...  

Abstract. The first International Ocean Discovery Program (IODP) Core-Log-Seismic Integration at Sea (CLSI@Sea) workshop, held in January–February 2018, brought together an international, multidisciplinary team of 14 early-career scientists and a group of scientific mentors specialized in subduction zone processes at the Nankai Trough, one of the Earth's most active plate-subduction zones located off the southwestern coast of Japan. The goal of the workshop was to leverage existing core, log, and seismic data previously acquired during the IODP's Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE), to address the role of the deformation front of the Nankai accretionary prism in tsunamigenic earthquakes and slow slip in the shallow portion of the subduction interface. The CLSI@Sea workshop was organized onboard the D/V Chikyu concurrently with IODP Expedition 380, allowing workshop participants to interact with expedition scientists installing a long-term borehole monitoring system (LTBMS) at a site where the workshop's research was focused. Sedimentary cores from across the deformation front were brought onboard Chikyu, where they were made available for new description, sampling, and analysis. Logging data, drilling parameters, and seismic data were also available for investigation by workshop participants, who were granted access to Chikyu laboratory facilities and software to perform analyses at sea. Multi-thematic presentations facilitated knowledge transfer between the participants across field areas, and highlighted the value of multi-disciplinary collaboration that integrates processes across different spatiotemporal scales. The workshop resulted in the synthesis of existing geophysical, geologic, and geochemical data spanning IODP Sites C0006, C0007, C0011 and C0012 in the NanTroSEIZE area, the identification of key outstanding research questions in the field of shallow subduction zone seismogenesis, and fostered collaborative and individual research plans integrating new data analysis techniques and multidisciplinary approaches.


Sign in / Sign up

Export Citation Format

Share Document