deformation front
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Chuang Sun ◽  
Zhigang Li ◽  
Shimin Wu ◽  
Zhiyuan He ◽  
Shaotian Zhao ◽  
...  

The WSFTB is located outboard of the eastern Tibetan Plateau, western China. It has received great attention due to high earthquake risks and rich resources of oil and gas. For both issues, the detailed structural configuration and deformation mechanism behind it are of great importance, but remain unclear due to the complexity created by the presence of multiple décollements. The effect of regionally distributed shallow Triassic salt décollement (SD) and the basal one (BD) has been well understood. In this paper, we focus on the third décollement situated between them. We conducted three sandbox experiments by varying this mid-level décollement (MD) from absence to presence, and from frictional to viscous, to test the effect on diversity of regional structural configuration. Our experimental results illustrated that 1) Absence of MD facilitated decoupling on SD, forming the greatest contrast between subsurface deformation front and the blind one beneath SD; 2) Frictional MD itself showed little decoupling, while its weakness reduced the bulk strength of deep structural level, lowering decoupling effect on SD and leading to approximating deformation fronts in the shallow and deep; 3) The viscous MD, along with SD relieved the resistance on their interbed layer. Consequently, the fastest deformation propagation rate and farthest deformation front (in all the experiments) occurred in the middle structural level. The modeled fold and thrust structures are comparable with the southern, central and northern WSFTB respectively, suggesting that varied MD may control the along-strike structural variations presented. The results also indicate that MD can alter the deformation partition in depth of any other multiple décollement system.


2021 ◽  
Vol 48 (1) ◽  
pp. 153
Author(s):  
Matías Villarroel ◽  
Pamela Jara ◽  
Reynaldo Charrier

Lithological heterogeneities in a rock series deformed by the development of a fold-and-thrust belt (FTB) affects the pattern of the resulting structures. We present a series of analogue experiments to determine the effect caused on the deformation pattern of a FTB by the presence of cohesive bodies, like plutons or basement blocks that oppose greater resistance than the host rocks to contractional deformation. The influence of these bodies on the deformation pattern of the FTB was studied by incorporating discordant bodies with different cohesions within a stratified granular sequence with negligible cohesion. We describe two sets of experiments in which the inserted body presents low (Co1) and high (Co2) cohesion respectively. The experiments show a tendency of the structural pattern to curve around the inserted body and to migrate towards the deformation front or the foreland, even when the cohesive body is not exposed. In the first case (Co1) the thrusts cut across the cohesive body, while in the second one (Co2) the cohesive body is not faulted, but transferred towards the deformation front along a basal detachment. Comparison of these results with natural examples at different scales shows a high degree of coincidence in the structural patterns recognized in both cases. Two of the main characteristics of these patterns are the tendency of the thrust faults traces to avoid the cohesive body and adopt the geometry of its distal edge. In order to explain curvatures in natural structural patterns in fold-and-thrust belts, we suggest consider the presence of unexposed bodies with higher strength than their environment.


2020 ◽  
Author(s):  
Joaquina Alvarez-Marrón ◽  
Dennis Brown ◽  
Juan Alcalde ◽  
Ignacio Marzán ◽  
Hao Kuo-Chen

<p>The region of Taiwan is undergoing active, oblique arc-continent colision between the Luzon Arc on the Philippine Sea Plate and the continental margin of Eurasia. The Fold-and-Thrust Belt (FTB) in Taiwan passes southwards into a submarine accretionary wedge at the Manila subduction zone. The aim of this contribution is to examine how an on land FTB changes into a marine accretionary prism in the context of an oblique arc-continent collision. The Miocene pre-orogenic sediments of the continental margin are widespread in the FTB ca. 23° latitude while the offshore wedge is built up dominantly by Pliocene to recent syn-orogenic sediments. In the transition area from the marine accretionary wedge ca. 21° latitude to the on land FTB, the thrust wedge is climbing up the slope of the Eurasian continental margin. The deformation front is at sea floor depth of ca. 4 km in the south to less than 1 km as it reaches the coast line. Here we use the island surface geology, marine reflection seismic profiles, and seismic tomography models to construct contour maps of the basal thrust and the depth to the Moho across a transition area from near 23° to near 21° latitude. In this zone, the deformation front draws a convex curvature as the wedge widens from ca. 50 in the north and south, to more than 130 km near 22° latitude. The basal thrust surface shows a scoop shape as its dip changes from southeast near the coast line to east southward. The basal thrust reaches over 7 km deep beneath the rear of the FTB before ramping into de basement and merging into the Chaochou fault at 10 km depth. Offshore, it shows a gentler dip from 7 km to c. 10 km depth before getting steeper towards the east below the Hengchung Ridge. The basal cuts laterally along-strike through the margin’s sedimentary cover to incorporate thicker Miocene pre-orogenic sediments onto its hanging wall as it passes from the offshore wedge to the on land FTB.</p><p>In the offshore area, the Moho (we use a Vp proxy of 7.5 km/s extracted from the seismic tomography) shallows southeastward, from near 25 km depth below the shelf slope break to less than 17 km depth below the offshore wedge near 21.5° latitude before it starts to deep east towards beneath the Taiwan coast. The Moho dips northeast from near 25 km depth below the coast near Kaohsiung, to near 40 depth below the rear of the FTB at 23.5°, latitude. This complex morphology of the Moho may be related to the changes in crustal thickness and the obliquity of the collision. Because of this, crustal thickening is less pronounced beneath southern Taiwan where the thinner part of the margin is colliding with the arc.</p><p>This research is part of project PGC2018-094227-B-I00 funded by the Spanish Research Agency from the Ministry of Science Innovation and Universities of Spain.</p>


2020 ◽  
Author(s):  
Stanislaw Mazur ◽  
Paweł Aleksandrowski ◽  
Łukasz Gągała ◽  
Piotr Krzywiec ◽  
Jerzy Żaba ◽  
...  

<p>The European Variscan belt sharply changes its trend in easternmost Germany and western Poland, where the ENE- to NE-striking structures are replaced by the ESE- to SE-trending ones. The structures of still another, NNE-SSW strike, take the lead, however, along the SE margin of the Bohemian Massif. The Variscan belt seems, thus, to make nearly a U-turn, encircling the Bohemian Massif from the north. This has been explained for almost a century by assuming a 180° oroclinal loop, in which the Rhenohercynian and Saxothuringian tectonostratigraphic zones inarm the core of the Bohemian Massif. According to this classical view, the outermost tectonostratigraphic zone of the Variscan belt, the Rhenohercynian Zone, continues eastward in the deep substratum of the Permian-Mesozoic basin and reappears at the surface along the eastern rim of the Bohemian Massif.</p><p>Since the late 1970s an alternative view has gained an increasing attention that postulates a dextral transpressional regime during the final accretion of the Variscan terranes. This transpressional tectonic context is believed to have resulted from sublatitudinal, right-lateral displacements between Gondwana and Laurussia. Near the Carboniferous-Permian boundary, Gondwana decoupled from the newly formed European Variscan belt and proceeded westward, toward the southern edge of the Laurentian segment of Laurussia, owing to the development of the Appalachian subduction system. Concomitantly with the peak of the Alleghanian orogeny during early Permian, the European Variscan belt experienced a crosscut of its major tectonic zones along a set of dextral strike-slip faults.</p><p>In this study, we investigate directions and continuity of structural trends in the external zones of the Variscan orogen in Poland and map a foreland extent of Variscan deformations using seismic, gravimetric-magnetic and borehole data. These permit us testing the orocline- vs strike-slip concepts and develop an overall kinematic model for the NE Variscides.</p><p>Matched filtering of isostatic gravity, guided by results of spectral analysis, along with other derivatives of gravity and magnetic fields reveal a dominant WNW-ESE-trending pre-Permian structural grain in the external zones of the Variscan belt in Poland. This trend is confirmed by regional distribution of dips in Carboniferous and Devonian strata that were penetrated by boreholes beneath Permian-Mesozoic sediments. Seismic constraints on the position of the Variscan deformation front come from (1) the GRUNDY 2003 seismic experiment, combining wide-angle reflection-refraction measurements with the near-vertical reflection seismics in central Poland and (2) PolandSPAN and POLCRUST-01 deep reflection profiles in SE Poland. The WNW-ESE structural trend in the Variscan foreland is parallel to a set of major strike-slip fault zones in the area that are considered to convey a significant dextral displacement between Laurussia and Gondwana. The revised position of the Variscan deformation front shows a similar, uninterrupted, generally WNW-ESE trend, up to the SE border of Poland, which indicates an initial continuation of the more internal Variscan zones into the area of the present-day Carpathians. The geometry of the Variscan deformation front along with the pattern of the Variscan structural grain are inconsistent with the idea of an oroclinal loop affecting the external, non-metamorphic Variscan belt.</p>


Sign in / Sign up

Export Citation Format

Share Document