Multivariate postprocessing using Cholesky-based multivariate Gaussian regression

Author(s):  
Thomas Muschinski ◽  
Georg J. Mayr ◽  
Thorsten Simon ◽  
Achim Zeileis

<p>To obtain reliable joint probability forecasts, multivariate postprocessing of numerical weather predictions (NWPs) must take into account dependencies among the univariate forecast errors—across different forecast horizons, locations or atmospheric quantities. We develop a framework for multivariate Gaussian regression (MGR), a flexible multivariate postprocessing technique with advantages over state-of-the-art methods.</p><p>In MGR both mean forecasts and parameters describing their error covariance matrix may be modeled simultaneously on NWP-derived predictor variables. The bivariate case is straightforward and has been used to postprocess horizontal wind vector forecasts, but higher dimensions present two major difficulties: ensuring the estimated error covariance matrix is positive definite and regularizing the high model complexity.</p><p>We tackle these problems by parameterizing the covariance through the entries of its basic and modified Cholesky decompositions. This ensures its positive definiteness and is the crucial fact making it possible to link parameters with predictors in a regression.  When there is a natural order to the variables, we can also sensibly reduce complexity through a priori restrictions of the parameter space.</p><p>MGR forecasts take the form of full joint parametric distributions—in contrast to ensemble copula coupling (ECC) that obtains samples from the joint distribution. This has the advantage that joint probabilities or quantiles can be easily derived.</p><p>Our novel method is applied to postprocess NWPs of surface temperature at an Alpine valley station for ten distinct lead times more than one week in the future.  All the mean forecasts and their full error covariance matrix are modelled on NWP-derived variables in one step. MGR outperforms ECC in combination with nonhomogeneous Gaussian regression.</p>

2016 ◽  
Vol 142 (697) ◽  
pp. 1767-1780 ◽  
Author(s):  
Niels Bormann ◽  
Massimo Bonavita ◽  
Rossana Dragani ◽  
Reima Eresmaa ◽  
Marco Matricardi ◽  
...  

2018 ◽  
Vol 146 (12) ◽  
pp. 3949-3976 ◽  
Author(s):  
Herschel L. Mitchell ◽  
P. L. Houtekamer ◽  
Sylvain Heilliette

Abstract A column EnKF, based on the Canadian global EnKF and using the RTTOV radiative transfer (RT) model, is employed to investigate issues relating to the EnKF assimilation of Advanced Microwave Sounding Unit-A (AMSU-A) radiance measurements. Experiments are performed with large and small ensembles, with and without localization. Three different descriptions of background temperature error are considered: 1) using analytical vertical modes and hypothetical spectra, 2) using the vertical modes and spectrum of a covariance matrix obtained from the global EnKF after 2 weeks of cycling, and 3) using the vertical modes and spectrum of the static background error covariance matrix employed to initiate a global data assimilation cycle. It is found that the EnKF performs well in some of the experiments with background error description 1, and yields modest error reductions with background error description 3. However, the EnKF is virtually unable to reduce the background error (even when using a large ensemble) with background error description 2. To analyze these results, the different background error descriptions are viewed through the prism of the RT model by comparing the trace of the matrix , where is the RT model and is the background error covariance matrix. Indeed, this comparison is found to explain the difference in the results obtained, which relates to the degree to which deep modes are, or are not, present in the different background error covariances. The results suggest that, after 2 weeks of cycling, the global EnKF has virtually eliminated all background error structures that can be “seen” by the AMSU-A radiances.


2006 ◽  
Vol 39 (1) ◽  
pp. 285-290 ◽  
Author(s):  
Yoshinori Takei ◽  
Hidehito Nanto ◽  
Shunshoku Kanae ◽  
Zi-Jiang Yang ◽  
Kiyoshi Wada

2008 ◽  
Vol 8 (12) ◽  
pp. 2279-2285 ◽  
Author(s):  
M.H. Bahari ◽  
A. Karsaz ◽  
M.B. Naghibi-S

2019 ◽  
Vol 7 (1) ◽  
pp. 78-91
Author(s):  
Stephen Haslett

Abstract When sample survey data with complex design (stratification, clustering, unequal selection or inclusion probabilities, and weighting) are used for linear models, estimation of model parameters and their covariance matrices becomes complicated. Standard fitting techniques for sample surveys either model conditional on survey design variables, or use only design weights based on inclusion probabilities essentially assuming zero error covariance between all pairs of population elements. Design properties that link two units are not used. However, if population error structure is correlated, an unbiased estimate of the linear model error covariance matrix for the sample is needed for efficient parameter estimation. By making simultaneous use of sampling structure and design-unbiased estimates of the population error covariance matrix, the paper develops best linear unbiased estimation (BLUE) type extensions to standard design-based and joint design and model based estimation methods for linear models. The analysis covers both with and without replacement sample designs. It recognises that estimation for with replacement designs requires generalized inverses when any unit is selected more than once. This and the use of Hadamard products to link sampling and population error covariance matrix properties are central topics of the paper. Model-based linear model parameter estimation is also discussed.


2014 ◽  
Vol 21 (5) ◽  
pp. 919-927 ◽  
Author(s):  
A. Solonen ◽  
J. Hakkarainen ◽  
A. Ilin ◽  
M. Abbas ◽  
A. Bibov

Abstract. The extended Kalman filter (EKF) is a popular state estimation method for nonlinear dynamical models. The model error covariance matrix is often seen as a tuning parameter in EKF, which is often simply postulated by the user. In this paper, we study the filter likelihood technique for estimating the parameters of the model error covariance matrix. The approach is based on computing the likelihood of the covariance matrix parameters using the filtering output. We show that (a) the importance of the model error covariance matrix calibration depends on the quality of the observations, and that (b) the estimation approach yields a well-tuned EKF in terms of the accuracy of the state estimates and model predictions. For our numerical experiments, we use the two-layer quasi-geostrophic model that is often used as a benchmark model for numerical weather prediction.


Sign in / Sign up

Export Citation Format

Share Document