background error covariance
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 2)

Abstract Recent numerical weather prediction systems have significantly improved medium-range forecasts by implementing hybrid background error covariance, for which climatological (static) and ensemble-based (flow-dependent) error covariance are combined. While the hybrid approach has been investigated mainly in variational systems, this study aims at exploring methods for implementing the hybrid approach for the local ensemble transform Kalman filter (LETKF). Following Kretchmer et al. (2015), the present study constructed hybrid background error covariance by adding collections of climatological perturbations to the forecast ensemble. In addition, this study proposes a new localization method that attenuates the ensemble perturbation (Z-localization) instead of inflating observation error variance (R-localization). A series of experiments with a simplified global atmospheric model revealed that the hybrid LETKF resulted in smaller forecast errors than the LETKF, especially in sparsely observed regions. Due to the larger ensemble enabled by the hybrid approach, optimal localization length scales for the hybrid LETKF were larger than those for the LETKF. With the LETKF, the Z-localization resulted in similar forecast errors as the R-localization. However, Z-localization has an advantage in enabling to apply different localization scales for flow-dependent perturbation and climatological static perturbations with the hybrid LETKF. The optimal localization for climatological perturbations was slightly larger than that for flow-dependent perturbations. This study proposes Optimal EigenDecomposition (OED) ETKF formulation to reduce computational costs. The computational expense of the OED ETKF formulation became significantly smaller than that of standard ETKF formulations as the number of climatological perturbations was increased beyond a few hundred.


2021 ◽  
Author(s):  
Pascal Marquet ◽  
Pauline Martinet ◽  
Jean-François Mahfouf ◽  
Alina Lavinia Barbu ◽  
Benjamin Ménétrier

Abstract. This study aims at introducing two conservative thermodynamic variables (moist-air entropy potential temperature and total water content) into a one-dimensional variational data assimilation system (1D-Var) to demonstrate the benefit for future operational assimilation schemes. This system is assessed using microwave brightness temperatures from a ground-based radiometer installed during the field campaign SOFGO3D dedicated to fog forecast improvement. An underlying objective is to ease the specification of background error covariance matrices that are currently highly dependent on weather conditions making difficult the optimal retrievals of cloud and thermodynamic properties during fog conditions. Background error covariance matrices for these new conservative variables have thus been computed by an ensemble approach based on the French convective scale model AROME, for both all-weather and fog conditions. A first result shows that the use of these matrices for the new variables reduces some dependencies to the meteorological conditions (diurnal cycle, presence or not of clouds) compared to usual variables (temperature, specific humidity). Then, two 1D-Var experiments (classical vs. conservative variables) are evaluated over a full diurnal cycle characterized by a stratus-evolving radiative fog situation, using hourly brightness temperatures. Results show, as expected, that analysed brightness temperatures by the 1D-Var are much closer to the observed ones than background values for both variable choices. This is especially the case for channels sensitive to water vapour and liquid water. On the other hand, analysis increments in model space (water vapour, liquid water) show significant differences between the two sets of variables.


2021 ◽  
Vol 28 (4) ◽  
pp. 565-583
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through the inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work, we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari–Cohn localization function; the within-component localization functions are standard Gaspari–Cohn with different localization radii, while the cross-localization function is newly constructed. The functions produce positive semidefinite localization matrices which are suitable for use in both Kalman filters and variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments, the multivariate Gaspari–Cohn function leads to better performance than any of the other multivariate localization functions.


Author(s):  
Deming Meng ◽  
Yaodeng Chen ◽  
Jun Li ◽  
Hongli Wang ◽  
Yuanbing Wang ◽  
...  

AbstractThe background error covariance (B) behaves differently and needs to be carefully defined in cloudy areas due to larger uncertainties caused by models’ inability to correctly represent complex physical processes. This study proposes a new cloud-dependent B strategy by adaptively adjusting the hydrometeor-included B in the cloudy areas according to the cloud index (CI) derived from the satellite-based cloud products. The adjustment coefficient is determined by comparing the error statistics of B for the clear and cloudy areas based on the two-dimensional geographical masks. The comparison highlights the larger forecast errors and manifests the necessity of using appropriate B in cloudy areas. The cloud-dependent B is then evaluated by a series of single observation tests and three-week cycling assimilation and forecasting experiments. The single observation experiments confirm that the cloud-dependent B allows cloud dependency for the multivariate analysis increments and alleviates the discontinuities at the cloud mask borders by treating the CI as an exponent. The impact study on regional numerical weather prediction (NWP) demonstrates that the application of the cloud-dependent B reduces analyses and forecasts bias and increases precipitation forecast skills. Diagnostics of a heavy rainfall case indicate that the application of the cloud-dependent B enhances the moisture, wind, and hydrometeors analyses and forecasts, resulting in more accurate forecasts of accumulated precipitation. The cloud-dependent piecewise analysis scheme proposed herein is extensible, and a more precise definition of CI can improve the analysis, which deserves future investigation.


Author(s):  
Yongming Wang ◽  
Xuguang Wang

AbstractA convective-scale static background-error covariance (BEC) matrix is further developed to include the capability of direct reflectivity assimilation and evaluated within the GSI-based 3-dimensional variational (3DVar) and hybrid ensemble-variational (EnVar) methods. Specific developments are summarized as follows: 1) Control variables (CVs) are extended to include reflectivity, vertical velocity, and all hydrometeor types. Various horizontal momentum and moisture CV options are included. 2) Cross-correlations between all CVs are established. 3) A storm intensity-dependent binning method is adopted to separately calculate static error matrices for clear-air and storms with varying intensities. The resultant static BEC matrices are simultaneously applied at proper locations guided by the observed reflectivity. 4) The EnVar is extended to adaptively incorporate static BECs based on the quality of ensemble covariances.Evaluation and examination of the new static BECs are first performed on the 8 May 2003 Oklahoma City supercell. Detailed diagnostics and 3DVar examinations suggest zonal/meridian winds and pseudo-relative humidity are selected horizontal momentum and moisture CVs for direct reflectivity assimilation, respectively; inclusion of cross-correlations favors to spinup and maintain the analyzed storms; application of binning improves characteristics and persistence of the simulated storm. Relative to an experiment using the full ensemble BECs (Exp-PureEnVar), incorporating static BECs in hybrid EnVar reduces spinup time and better analyzes reflectivity distributions while the background ensemble is deficient in sampling errors. Compared to both pure 3DVar and Exp-PureEnVar, hybrid EnVar better predicts reflectivity distributions and better maintains strong mesocyclone. Further examination through the 20 May 2013 Oklahoma supercells confirms these results and additionally demonstrates the effectiveness of adaptive hybridization.


2021 ◽  
Author(s):  
Zofia Stanley ◽  
Ian Grooms ◽  
William Kleiber

Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through inclusion of cross-domain terms in the background error covariance matrix. When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari-Cohn localization function; the within-component localization functions are standard Gaspari-Cohn with different localization radii while the cross-localization function is newly constructed. The functions produce non-negative definite localization matrices, which are suitable for use in variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate analogs of all four functions in a simple experiment with the bivariate Lorenz '96 system. In our experiment the multivariate Gaspari-Cohn function leads to better performance than any of the other localization functions.


2021 ◽  
Author(s):  
Tsz Yan Leung ◽  
Polly J. Smith ◽  
Amos S. Lawless ◽  
Nancy K. Nichols ◽  
Matthew J. Martin

<p>In variational data assimilation, background-error covariance structures have the ability to spread information from an observed part of the system to unobserved parts.  Hence an accurate specification of these structures is crucially important for the success of assimilation systems and therefore of forecasts that their outputs initiate.  For oceanic models, background-error covariances have traditionally been modelled by parametrisations which mainly depend on macroscopic properties of the ocean and have limited dependence on local conditions.  This can be problematic during passage of tropical cyclones, when the spatial and temporal variability of the ocean state depart from their characteristic structures.  Furthermore, the traditional method of estimating oceanic background-error covariances could amplify imbalances across the air-sea interface when weakly coupled data assimilation is applied, thereby bringing a detrimental impact to forecasts of cyclones.  Using the case study of Cyclone Titli, which affected the Bay of Bengal in 2018, we explore hybrid methods that combine the traditional modelling strategy with flow-dependent estimates of the ocean's error covariance structures based on the latest-available short-range ensemble forecast.  This hybrid approach is investigated in the idealised context of a single-column model as well as in the UK Met Office’s state-of-the-art system.  The idealised model helps inform how the inclusion of ensemble information can improve coupled forecasts.  Different methods for producing the ensemble are explored, with the goal of generating a limited-sized ensemble that best represents the uncertainty in the ocean fields.  We then demonstrate the power of this hybrid approach in changing the analysed structure of oceanic fields in the Met Office system, and explain the difference between the traditional and hybrid approaches in light of the ways the assimilation systems respond to single synthetic observations.  Finally, we discuss the benefits that the hybrid approach in ocean data assimilation can bring to atmospheric forecasts of the cyclone.</p>


Sign in / Sign up

Export Citation Format

Share Document