scholarly journals Integrated hydrometeorological – snow – frozen ground observations in the alpine region of the Heihe River Basin, China

Author(s):  
Tao Che ◽  
Xin Li ◽  
Shaomin Liu ◽  
Hongyi Li ◽  
Ziwei Xu ◽  
...  

Abstract. The alpine region is important in riverine and watershed ecosystems as a contributor of freshwater, providing and stimulating specific habitats for biodiversity. In parallel, recent climate change, human activities and other perturbations may disturb hydrological processes and eco-functions, creating the need for next-generation observational and modeling approaches to advance a predictive understanding of such processes in the alpine region. However, several formidable challenges, including the cold and harsh climate, high altitude and complex topography, inhibit complete and consistent data collection where/when needed, which hinders the development of remote sensing technologies and alpine hydrological models. The current study presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin (HRB) in China. Gap-free meteorological and hydrological data were monitored from an observation network connecting a group of automatic meteorological stations (AMSs). In addition, to capture snow accumulation and ablation processes, snow cover properties were collected from a snow observation superstation using state-of-the-art techniques and instruments. High-resolution soil physics datasets were also obtained to capture the freeze-thaw processes from a frozen ground observation superstation. The updated datasets were released to scientists with multidisciplinary backgrounds (i.e., cryosphere science, hydrology, and meteorology), and they are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote sensing products and hydrological models for a broader community. The datasets are available from the Cold and Arid Regions Science Data Center at Lanzhou https://doi.org/10.3972/hiwater.001.2019.db.

2019 ◽  
Vol 11 (3) ◽  
pp. 1483-1499 ◽  
Author(s):  
Tao Che ◽  
Xin Li ◽  
Shaomin Liu ◽  
Hongyi Li ◽  
Ziwei Xu ◽  
...  

Abstract. The alpine region is important in riverine and watershed ecosystems as a contributor of freshwater, providing and stimulating specific habitats for biodiversity. In parallel, recent climate change, human activities and other perturbations may disturb hydrological processes and eco-functions, creating the need for next-generation observational and modeling approaches to advance a predictive understanding of such processes in the alpine region. However, several formidable challenges, including the cold and harsh climate, high altitude and complex topography, inhibit complete and consistent data collection where and when it is needed, which hinders the development of remote-sensing technologies and alpine hydrological models. The current study presents a suite of datasets consisting of long-term hydrometeorological, snow cover and frozen-ground data for investigating watershed science and functions from an integrated, distributed and multiscale observation network in the upper reaches of the Heihe River Basin (HRB) in China. Meteorological and hydrological data were monitored from an observation network connecting a group of automatic meteorological stations (AMSs). In addition, to capture snow accumulation and ablation processes, snow cover properties were collected from a snow observation superstation using state-of-the-art techniques and instruments. High-resolution soil physics datasets were also obtained to capture the freeze–thaw processes from a frozen-ground observation superstation. The updated datasets were released to scientists with multidisciplinary backgrounds (i.e., cryospheric science, hydrology and meteorology), and they are expected to serve as a testing platform to provide accurate forcing data and validate and evaluate remote-sensing products and hydrological models for a broader community. The datasets are available from the Cold and Arid Regions Science Data Center at Lanzhou (https://doi.org/10.3972/hiwater.001.2019.db, Li, 2019).


1987 ◽  
Vol 9 ◽  
pp. 225-228
Author(s):  
Zeng Qunzhi ◽  
Zhang Shunying ◽  
Chen Xianzhang ◽  
Wang Jian

The images of NOAA/TIROS-N APT, AVHRR and a few Landsat MSS obtained from 1980 to 1985 are analysed in this paper. It is found that the snow-cover distribution in Qilian Mountains is above 3700 m a.s.l. during winter to spring every year. There are two concentrations of snow cover. One is on Mount Leng Longling in the upper reaches of the Shiyang River and the other is located between Hala Lake and Mount Danghe Nanshan.Based on preliminary investigations, it is known that the surface water resource in the Hexi region is 68 8 × 108 m3, of which about 24.8% is from glaciers and melting, and the snow-melt run-off is 7.63 × 108 m3, equal to 62.6% of the total amount of spring run-off.The average value of Cv for spring run-off in the Shiyang River, Heihe River, and Shule River is 0 32 and the Cv value of snow-melt run-off in spring is 0.41, about three times as much as that of the annual run-off in the Hexi, region. A prediction model of spring snow-melt run-off at the Ying Louxia Hydrometric station in the Heihe River area can be constructed by using hydrometeorological data and snow-cover percentage for the Heihe River basin obtained from NOAA/TIROS-N APT, and AVHRR images. The prediction models (2) and (3) have been tested by the Water Resources Management Office of the Heihe River basin in the Zhangye and Flood Prevention Office of Gansu Province. The prediction accuracy is suitable for demands.


2012 ◽  
Vol 6 (1) ◽  
pp. 061701 ◽  
Author(s):  
Yongmin Yang ◽  
Hongbo Su ◽  
Renhua Zhang ◽  
Jing Tian ◽  
Siquan Yang

Sign in / Sign up

Export Citation Format

Share Document