scholarly journals Processing methodology for the ITS_LIVE Sentinel-1 ice velocity product

2021 ◽  
Author(s):  
Yang Lei ◽  
Alex S. Gardner ◽  
Piyush Agram

Abstract. The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project seeks to accelerate understanding of critical glaciers and ice sheet processes by providing researchers with global, low-latency, comprehensive and state-of-the-art records of surface velocities and elevations as observed from space. Here we describe the image-pair ice velocity product and processing methodology for ESA Sentinel-1 radar data. We demonstrate improvements to the core processing algorithm for dense offset tracking, “autoRIFT”, that provides finer resolution and higher accuracy data products with improved computational efficiency when compared to earlier versions. A novel calibration is applied to the data to correct for Sentinel-1A/B subswath- and full swath-dependent geolocation errors caused by systematic issues with the instruments. Sentinel-1’s C-band images are affected by variations in the total electron content of the ionosphere that results in large velocity errors in the azimuth (along-track) direction. To reduce these effects slant-range (line-of-sight or LOS) velocities are used and accompanied by LOS parameters that support map coordinate (x/y) velocity inversion from ascending and descending slant-range offset measurements, as derived from 2 image-pairs. The described product and methods comprise the MEaSUREs ITS_LIVE Sentinel-1 Image-Pair Glacier and Ice Sheet Surface Velocities: Version 2 (https://its-live.jpl.nasa.gov).

2021 ◽  
Vol 13 (7) ◽  
pp. 3491-3512
Author(s):  
Anne Solgaard ◽  
Anders Kusk ◽  
John Peter Merryman Boncori ◽  
Jørgen Dall ◽  
Kenneth D. Mankoff ◽  
...  

Abstract. We present the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) Ice Velocity product (https://doi.org/10.22008/promice/data/sentinel1icevelocity/greenlandicesheet, Solgaard and Kusk, 2021), which is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 through to the present. The product is based on Sentinel-1 synthetic aperture radar data and has a 500 m grid spacing. A new mosaic is available every 12 d and spans two consecutive Sentinel-1 cycles (24 d). The product is made available within ∼ 10 d of the last acquisition and includes all possible 6 and 12 d pairs within the two Sentinel-1A cycles. We describe our operational processing chain from data selection, mosaicking, and error estimation to final outlier removal. The product is validated against in situ GPS measurements. We find that the standard deviation of the difference between satellite- and GPS-derived velocities (and bias) is 20 m yr−1 (−3 m yr−1) and 27 m yr−1 (−2 m yr−1) for the components in an eastern and northern direction, respectively. Over stable ground the values are 8 m yr−1 (0.1 m yr−1) and 12 m yr−1 (−0.6 m yr−1) in an eastern and northern direction, respectively. This is within the expected values; however, we expect that the GPS measurements carry a considerable part of this uncertainty. We investigate variations in coverage from both a temporal and spatial perspective. The best spatial coverage is achieved in winter due to the comprehensive data coverage by Sentinel-1 and high coherence, while summer mosaics have the lowest coverage due to widespread melt. The southeast Greenland Ice Sheet margin, along with other areas of high accumulation and melt, often has gaps in the ice velocity mosaics. The spatial comprehensiveness and temporal consistency make the product ideal both for monitoring and for studying ice-sheet-wide and glacier-specific ice discharge and dynamics of glaciers on seasonal scales.


2021 ◽  
pp. 1-8
Author(s):  
Saurabh Vijay ◽  
Michalea D. King ◽  
Ian M. Howat ◽  
Anne M. Solgaard ◽  
Shfaqat Abbas Khan ◽  
...  

Abstract Greenland glaciers exhibit variable seasonal velocity signals that may reflect differences in subglacial hydrology. Here, we conduct a first GrIS-wide glacier classification based on seasonal velocity patterns derived from 2017 Sentinel-1 radar data. Our classification focuses on two distinct seasonal ice velocity patterns, with the first (type-2 from Moon and others, 2014) showing periods of both speedup and slowdown during the melt season, and the second (type-3) instead showing a longer period of slowdown from elevated velocities in the winter and spring. We analyze 221 glaciers in 2017 and show that 48 exhibit type-2 behavior, and 72 exhibit type-3 behavior. We extend the classification to 2018 and 2019 and find that while the glaciers meeting each criterion vary year to year, type-2 is consistently more common in the northern regions and type-3 is more common in the south. Our results highlight the varied impact of meltwater on subglacial drainage systems and glacier flow in Greenland.


2021 ◽  
Author(s):  
Anne Solgaard ◽  
Anders Kusk ◽  
John Peter Merryman Boncori ◽  
Jørgen Dall ◽  
Kenneth D. Mankoff ◽  
...  

Abstract. We present the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) ice velocity product (https://doi.org/10.22008/promice/data/sentinel1icevelocity/greenlandicesheet) (Solgaard and Kusk, 2021)) which is a September 2016 through present time series of Greenland Ice Sheet ice-velocity mosaics. The product is based on Sentinel-1 synthetic aperture radar data and has a 500 m spatial resolution. A new mosaic is available every 12 days and span two consecutive Sentinel-1 cycles (24 days). The product is made available within ~10 days of the last acquisition and includes all possible 6 and 12 day pairs within the two Sentinel-1A cycles. We describe our operational processing chain in high detail from data selection, mosaicking and error estimation to final outlier removal. The product is validated against in-situ GPS measurements. We find that the standard deviation of the difference between satellite and GPS derived velocities is 20 m/yr and 27 m/yr for the vx and vy components, respectively. This is within the expected bounds, however, we expect that the GPS measurements carry a considerable part of this uncertainty. We investigate variations in coverage from both a temporal and spatial perspective. Best spatial coverage is achieved in winter due to excellent data coverage and high coherence, while summer mosaics have the lowest coverage due to widespread melt. The southeast Greenland Ice Sheet margin, along with other areas of high accumulation and melt, often have gaps in the ice velocity mosaics. The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet wide ice discharge and dynamics of glaciers.


Sign in / Sign up

Export Citation Format

Share Document