incoherent scatter
Recently Published Documents


TOTAL DOCUMENTS

866
(FIVE YEARS 85)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 40 (1) ◽  
pp. 1-10
Author(s):  
Fasil Tesema ◽  
Noora Partamies ◽  
Daniel K. Whiter ◽  
Yasunobu Ogawa

Abstract. Energetic particle precipitation associated with pulsating aurora (PsA) can reach down to lower mesospheric altitudes and deplete ozone. It is well documented that pulsating aurora is a common phenomenon during substorm recovery phases. This indicates that using magnetic indices to model the chemistry induced by PsA electrons could underestimate the energy deposition in the atmosphere. Integrating satellite measurements of precipitating electrons in models is considered to be an alternative way to account for such an underestimation. One way to do this is to test and validate the existing ion chemistry models using integrated measurements from satellite and ground-based observations. By using satellite measurements, an average or typical spectrum of PsA electrons can be constructed and used as an input in models to study the effects of the energetic electrons in the atmosphere. In this study, we compare electron densities from the EISCAT (European Incoherent Scatter scientific radar system) radars with auroral ion chemistry and the energetics model by using pulsating aurora spectra derived from the Polar Operational Environmental Satellite (POES) as an energy input for the model. We found a good agreement between the model and EISCAT electron densities in the region dominated by patchy pulsating aurora. However, the magnitude of the observed electron densities suggests a significant difference in the flux of precipitating electrons for different pulsating aurora types (structures) observed.


2021 ◽  
Author(s):  
Habtamu W. Tesfaw ◽  
Ilkka I. Virtanen ◽  
Anita T. Aikio ◽  
Amore' Elsje Nel ◽  
Michael Kosch ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1518
Author(s):  
Haoyi Chen ◽  
Kai Yuan ◽  
Ming Yao ◽  
Jiawei Xiong

Many modern ionospheric studies rely on incoherent scatter radars (ISR) since this kind of radar is able to detect various ionospheric parameters over very long ranges. The performance of ISR significantly depends on its coding system. In recent decades, a new type of coding system, which is the so-called composite coding, was presented. It used to be constructed by using a certain code to modulate alternating code to achieve better detection resolution and anti-noise performance for ISRs. In the present study, a new composite coding system was presented, which is constructed based on complementary codes and alternating codes. In this paper, the performance of the new composite code will be compared with that of several traditional codes to show that the new composite code can help to improve the detection performance of the ISR. According to the analysis based on the ambiguity function, the present composite coding system helps to improve the range resolution and detection range for ISR detections. In addition, numerical tests on anti-noise performance show that the complementary composite coding system has a good anti-noise performance and helps to reduce the necessary times of incoherent integration. As a result, the composite coding system can improve the time resolution.


2021 ◽  
Author(s):  
Michael T. Rietveld ◽  
Peter Stubbe

Abstract. We present the historical background to the construction of a major ionospheric heating facility near Tromsø, Norway in the 1970s by the Max Planck Institute for Aeronomy and the subsequent operational history to the present. It was built next to the EISCAT incoherent scatter radar facility and in a region with a multitude of diagnostic instruments used to study the auroral region. The facility was transferred to the EISCAT Scientific Association in January 1993 and continues to provide new discoveries in plasma physics and ionospheric and atmospheric science to this day. It is expected that ‘Heating’ will continue operating together with the new generation of incoherent scatter radar, called EISCAT_3D, when it is commissioned in the near future.


2021 ◽  
Vol 13 (20) ◽  
pp. 4077
Author(s):  
Alessio Pignalberi ◽  
Fabio Giannattasio ◽  
Vladimir Truhlik ◽  
Igino Coco ◽  
Michael Pezzopane ◽  
...  

The global statistical median behavior of the electron temperature (Te) in the topside ionosphere was investigated through in-situ data collected by Langmuir Probes on-board the European Space Agency Swarm satellites constellation from the beginning of 2014 to the end of 2020. This is the first time that such an analysis, based on such a large time window, has been carried out globally, encompassing more than half a solar cycle, from the activity peak of 2014 to the minimum of 2020. The results show that Swarm data can help in understanding the main features of Te in the topside ionosphere in a way never achieved before. Te data measured by Swarm satellites were also compared to data modeled by the empirical climatological International Reference Ionosphere (IRI) model and data measured by Jicamarca (12.0°S, 76.8°W), Arecibo (18.2°N, 66.4°W), and Millstone Hill (42.6°N, 71.5°W) Incoherent Scatter Radars (ISRs). Moreover, the correction of Swarm Te data recently proposed by Lomidze was applied and evaluated. These analyses were performed for two main reasons: (1) to understand how the IRI model deviates from the measurements; and (2) to test the reliability of the Swarm dataset as a new possible dataset to be included in the underlying empirical dataset layer of the IRI model. The results show that the application of the Lomidze correction improved the agreement with ISR data above all at mid latitudes and during daytime, and it was effective in reducing the mismatch between Swarm and IRI Te values. This suggests that future developments of the IRI Te model should include the Swarm dataset with the Lomidze correction. However, the existence of a quasi-linear relation between measured and modeled Te values was well verified only below about 2200 K, while for higher values it was completely lost. This is an important result that IRI Te model developers should properly consider when using the Swarm dataset.


Sign in / Sign up

Export Citation Format

Share Document