scholarly journals A biomass equation dataset for common shrub species in China

2021 ◽  
Author(s):  
Yang Wang ◽  
Wenting Xu ◽  
Zhiyao Tang ◽  
Zongqiang Xie

Abstract. Shrub biomass equations provide an accurate, efficient and convenient method in estimating biomass of shrubland ecosystems and biomass of the shrub layer in forest ecosystems at various spatial and temporal scales. In recent decades, many shrub biomass equations have been reported mainly in journals, books and postgraduate's dissertations. However, these biomass equations are applicable for limited shrub species with respect to a large number of shrub species widely distributed in China, which severely restricted the study of terrestrial ecosystem structure and function, such as biomass, production, and carbon budge. Therefore, we firstly carried out a critical review of published literature (from 1982 to 2019) on shrub biomass equations in China, and then developed biomass equations for the dominant shrub species using a unified method based on field measurements of 738 sites in shrubland ecosystems across China. Finally, we constructed the first comprehensive biomass equation dataset for China’s common shrub species. This dataset consists of 822 biomass equations specific to 167 shrub species and has significant representativeness to the geographical, climatic and shrubland vegetation features across China. The dataset is freely available at https://doi.org/10.11922/sciencedb.00641 for noncommercial scientific applications, and this dataset fills a significant gap in woody biomass equations and provides key parameters for biomass estimation in studies on terrestrial ecosystem structure and function.

2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.


2005 ◽  
Vol 53 (1-2) ◽  
pp. 93-108 ◽  
Author(s):  
Bénédicte Pasquer ◽  
Goulven Laruelle ◽  
Sylvie Becquevort ◽  
Véronique Schoemann ◽  
Hugues Goosse ◽  
...  

2010 ◽  
pp. 111-145
Author(s):  
Thomas Lacher ◽  
"Jr Bickham ◽  
Claude Gascon ◽  
Rhys Green ◽  
Robin Moore ◽  
...  

1974 ◽  
pp. 67-111 ◽  
Author(s):  
Ariel Lugo ◽  
Mark Brinson ◽  
Maximo Cerame Vivas ◽  
Clayton Gist ◽  
Robert Inger ◽  
...  

2018 ◽  
Vol 63 (7) ◽  
pp. 613-625 ◽  
Author(s):  
Isabel Muñoz ◽  
Meritxell Abril ◽  
Joan Pere Casas-Ruiz ◽  
Maria Casellas ◽  
Lluís Gómez-Gener ◽  
...  

2018 ◽  
Vol 63 (12) ◽  
pp. 1498-1513 ◽  
Author(s):  
Vincent Fugère ◽  
Dean Jacobsen ◽  
Erin H. Finestone ◽  
Lauren J. Chapman

Sign in / Sign up

Export Citation Format

Share Document