headwater stream
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 74)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Alfons R. Weig ◽  
Martin G. J. Löder ◽  
Anja F. R. M. Ramsperger ◽  
Christian Laforsch

The ubiquitous use of plastic products in our daily life is often accompanied by improper disposal. The first interactions of plastics with organisms in the environment occur by overgrowth or biofilm formation on the particle surface, which can facilitate the ingestion by animals. In order to elucidate the colonization of plastic particles by prokaryotic and eukaryotic microorganisms in situ, we investigated microbial communities in biofilms on four different polymer types and on mineral particles in a small headwater stream 500 m downstream of a wastewater treatment plant in Germany. Microplastic and mineral particles were exposed to the free-flowing water for 4 weeks in spring and in summer. The microbial composition of the developing biofilm was analyzed by 16S and 18S amplicon sequencing. Despite the expected seasonal differences in the microbial composition of pro- and eukaryotic communities, we repeatedly observed polymer type-specific differentiation in both seasons. The order of polymer type-specific prokaryotic and eukaryotic community distances calculated by Robust Aitchison principal component analysis (PCA) was the same in spring and summer samples. However, the magnitude of the distance differed considerably between polymer types. Prokaryotic communities on polyethylene particles exhibited the most considerable difference to other particles in summer, while eukaryotic communities on polypropylene particles showed the most considerable difference to other spring samples. The most contributing bacterial taxa to the polyethylene-specific differentiation belong to the Planctomycetales, Saccharimonadales, Bryobacterales, uncultured Acidiomicrobia, and Gemmatimonadales. The most remarkable differences in eukaryotic microorganism abundances could be observed in several distinct groups of Ciliophora (ciliates) and Chlorophytes (green algae). Prediction of community functions from taxonomic abundances revealed differences between spring and summer, and – to a lesser extent – also between polymer types and mineral surfaces. Our results show that different microplastic particles were colonized by different biofilm communities. These findings may be used for advanced experimental designs to investigate the role of microorganisms on the fate of microplastic particles in freshwater ecosystems.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Valerie Ouellet ◽  
Melinda D. Daniels ◽  
Marc Peipoch ◽  
Laura Zgleszewski ◽  
Nathan Watson ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Chun Ngai Chan ◽  
Cheuk Lam Tsang ◽  
Frederick Lee ◽  
Boyi Liu ◽  
Lishan Ran

High-gradient headwater streams are major participants in the carbon (C) cycle because of their capabilities of emitting a significant amount of carbon dioxide (CO2). Notwithstanding, their CO2 emissions have been largely overlooked in previous studies owing to their small water surface area and are sometimes strenuous to be measured because of their narrow channel widths and strong turbulence. This study examined the spatial and seasonal variabilities of CO2 dynamics of a subtropical steep headwater stream fed by groundwater. Our study found that the pH and dissolved oxygen exhibited a general increasing trend away from the source of the headwater whereas the partial pressure of carbon dioxide (pCO2) showed a downward trend. The stream water pCO2 in the upper reach was found to be higher than the ambient level by 19–114 times, with an average drop of >70% at just 9.2 m from the groundwater source, demonstrating the potentially large emission of CO2 into the atmosphere within this short distance. Additionally, the sampling works conducted further downstream revealed that the CO2 derived from groundwater could almost completely dissipate within approximately half a kilometer downstream of the source. The concentrations of dissolved organic carbon and pCO2 were also lower during the period with lower air temperatures in the headwater stream, indicating temperature-dependent metabolism and decomposition of organic matter in soil might modulate the C dynamics in the headwater stream, although the rapid gas exchange along the stream remained the determinative factor. Our findings reassert that headwater streams are an essential source of CO2 and disregarding them from the studies of greenhouse gas emissions of inland waters would underestimate their potency to influence the global C cycle.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Eleri G. Pritchard ◽  
Daniel D. A. Chadwick ◽  
Michael A. Chadwick ◽  
Paul Bradley ◽  
Carl D. Sayer ◽  
...  

2021 ◽  
Author(s):  
Nicholas S. Marzolf ◽  
Gaston E. Small ◽  
Diana Oviedo-Vargas ◽  
Carissa N. Ganong ◽  
John H. Duff ◽  
...  

Abstract The role of rivers and streams in the global carbon (C) cycle remains unconstrained, especially in headwater streams where CO2 evasion (FCO2) to the atmosphere is high. Stream C cycling is understudied in the tropics compared to temperate streams, and tropical streams may have among the highest FCO2 due to higher temperatures, continuous organic matter inputs, and high respiration rates both in-stream and in surrounding soils. In this paper, we present paired in-stream O2 and CO2 sensor data from a headwater stream in a lowland rainforest in Costa Rica to explore temporal variability in ecosystem processes. Further, we estimate groundwater CO2 inputs (GWCO2) from riparian well CO2 measurements and assess all fluxes to examine the relative contributions of sinks and sources of dissolved inorganic C (DIC) to a headwater stream. Paired O2 - CO2 data reveal stream CO2 supersaturation driven by groundwater CO2 inputs and large in-stream production of CO2. Areal fluxes in our study reach show FCO2 is supported by both GWCO2 inputs and in-stream metabolism and the seasonality in GWCO2 reflects the hydrology of the site. Using a mass balance approach, we show FCO2 is the dominant loss of DIC from the stream, greater than dissolved exports, and is sustained by both internal production of DIC and terrestrial inputs of DIC. Our results underscore the importance of tropical headwater streams as large contributors of greenhouse gases to the atmosphere among inland waters and show of this C derives from both in-stream and terrestrial sources.


2021 ◽  
Vol 284 ◽  
pp. 117114
Author(s):  
Wangshou Zhang ◽  
Hengpeng Li ◽  
Steven G. Pueppke ◽  
Jiaping Pang

Sign in / Sign up

Export Citation Format

Share Document