biomass equations
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 22)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yang Wang ◽  
Wenting Xu ◽  
Zhiyao Tang ◽  
Zongqiang Xie

Abstract. Shrub biomass equations provide an accurate, efficient and convenient method in estimating biomass of shrubland ecosystems and biomass of the shrub layer in forest ecosystems at various spatial and temporal scales. In recent decades, many shrub biomass equations have been reported mainly in journals, books and postgraduate's dissertations. However, these biomass equations are applicable for limited shrub species with respect to a large number of shrub species widely distributed in China, which severely restricted the study of terrestrial ecosystem structure and function, such as biomass, production, and carbon budge. Therefore, we firstly carried out a critical review of published literature (from 1982 to 2019) on shrub biomass equations in China, and then developed biomass equations for the dominant shrub species using a unified method based on field measurements of 738 sites in shrubland ecosystems across China. Finally, we constructed the first comprehensive biomass equation dataset for China’s common shrub species. This dataset consists of 822 biomass equations specific to 167 shrub species and has significant representativeness to the geographical, climatic and shrubland vegetation features across China. The dataset is freely available at https://doi.org/10.11922/sciencedb.00641 for noncommercial scientific applications, and this dataset fills a significant gap in woody biomass equations and provides key parameters for biomass estimation in studies on terrestrial ecosystem structure and function.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1332
Author(s):  
Yanhong Cui ◽  
Huaxing Bi ◽  
Shuqin Liu ◽  
Guirong Hou ◽  
Ning Wang ◽  
...  

The accurate estimation of forest biomass is important to evaluate the structure and function of forest ecosystems, estimate carbon sinks in forests, and study matter cycle, energy flow, and the effects of climate change on forest ecosystems. Biomass additivity is a desirable characteristic to predict each component and the total biomass since it ensures consistency between the sum of the predicted values of components such as roots, stems, leaves, pods, and branches and the prediction for the total tree. In this study, 45 Robinia pseudoacacia L. trees were harvested to determine each component and the total biomass in the Loess Plateau of western Shanxi Province, China. Three additive systems of biomass equations of R. pseudoacacia L., based on the diameter at breast height (D) only and on the combination of D and tree height (H) with D2H and DbHc, were established. To ensure biomass model additivity, the additive system of biomass equations considers the correlation among different components using simultaneous equations and establishes constraints on the parameters of the equation. Seemingly uncorrelated regression (SUR) was used to estimate the parameters of the additive system of biomass equations, and the jackknifing technique was used to verify the accuracy of prediction of the additive system of biomass equations. The results showed that (1) the stem biomass contributed the most to the total biomass, comprising 51.82% of the total biomass, followed by the root biomass (24.63%) and by the pod and leaf biomass, which accounted for the smallest share, comprising 1.82% and 2.22%, respectively; (2) the three additive systems of biomass equations of R. pseudoacacia L. fit well with the models and were effective at making predictions, particularly for the root, stem, above-ground, and total biomass (R2adj > 0.812; root mean square error (RMSE) < 0.151). The mean absolute error (MAE) was less than 0.124, and the mean prediction error (MPE) was less than 0.037. (3) When the biomass model added the tree height predictor, the goodness of fit R2adj increased, RMSE decreased, and the accuracy of prediction was much improved. In particular, the additive system, which was developed based on DbHc combination prediction factors, was the most accurate. The additive system of biomass equations established in this study can provide a reliable and accurate estimation of the individual biomass of R. pseudoacacia L. in the Loess region of western Shanxi Province, China.


2020 ◽  
Vol 50 ◽  
Author(s):  
Mohan KC ◽  
Euan G. Mason ◽  
Horacio E. Bown ◽  
Grace Jones

Background: Additivity has long been recognised as a desirable property of systems of equations to predict the biomass of components and the whole tree. However, most tree biomass studies report biomass equations fitted using traditional ordinary least-squares regression. Therefore, we aimed to develop models to estimate components, subtotals and above-ground total biomass for a Pinus radiata D.Don biomass dataset using traditional linear and nonlinear ordinary leastsquares regressions, and to contrast these equations with the additive procedures of biomass estimation.Methods: A total of 24 ten-year-old trees were felled to assess above-ground biomass. Two broad procedures were implemented for biomass modelling: (a) independent; and (b) additive. For the independent procedure, traditional linear models (LINOLS) with scaled power transformations and y-intercepts and nonlinear power models (NLINOLS) without y-intercepts were compared. The best linear (transformed) models from the independent procedure were further tested in three different additive structures (LINADD1, LINADD2, and LINADD3). All models were evaluated using goodness-of-fit statistics, standard errors of estimates, and residual plots.Results: The LINOLS with scaled power transformations and y-intercepts performed better for all components, subtotals and total above-ground biomass in contrast to NLINOLS that lacked y-intercepts. The additive model (LINADD3) in a joint generalised linear least-squares regression, also called seemingly unrelated regression (SUR), provided the best goodness-of-fit statistics and residual plots for four out of six components (stem, branch, new foliage and old foliage), two out of three subtotals (foliage and crown), and above-ground total biomass compared to other methods. However, bark, cone and bole biomass were better predicted by the LINOLS method.Conclusions: SUR was the best method to predict biomass for the 24-tree dataset because it provided the best goodness-of-fit statistics with unbiased estimates for 7 out of 10 biomass components. This study may assist silviculturists and forest managers to overcome one of the main problems when using biomass equations fitted independently for each tree component, which is that the sum of the biomasses of the predicted tree components does not necessarily add to the total biomass, as the additive biomass models do.


Trees ◽  
2020 ◽  
Author(s):  
David I. Forrester ◽  
Ian C. Dumbrell ◽  
Stephen R. Elms ◽  
Keryn I. Paul ◽  
Elizabeth A. Pinkard ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Yunjian Luo ◽  
Xiaoke Wang ◽  
Zhiyun Ouyang ◽  
Fei Lu ◽  
Liguo Feng ◽  
...  

Abstract. Tree biomass equations are the most commonly used method to estimate tree and forest biomasses at various spatial and temporal scales because of their high accuracy, efficiency and conciseness. For decades, many tree biomass equations have been reported in diverse types of literature (e.g., journals, books and reports). These scattered equations are being compiled, and tree biomass equation datasets are currently available for many geographical regions (e.g., Europe, North America and sub-Saharan Africa) and countries (e.g., Australia, Indonesia and Mexico). However, one important country stands out as an area where a large number of biomass equations have not yet been reviewed and inventoried extensively: China. Therefore, in this study, we carried out a broad survey and critical review of the literature (from 1978 to 2013) on biomass equations in China and compiled a normalized tree biomass equation dataset for China. This dataset consists of 5924 biomass equations for nearly 200 tree species and their associated background information (e.g., geographical location, climate and stand description), showing sound geographical, climatic and forest vegetation coverage across China. The dataset is freely available at https://doi.org/10.1594/PANGAEA.895244 (Luo et al., 2018) for noncommercial scientific applications, and this dataset fills an important regional gap in global biomass equations and provides key parameters for biomass estimation in forest inventory and carbon accounting studies in China.


2020 ◽  
Vol 18 (1) ◽  
pp. 13-21
Author(s):  
Majig Tungalag ◽  
◽  
Batbaatar Altanzagas ◽  
Sukhbaatar Gerelbaatar ◽  
Chimidnyam Dorjsuren ◽  
...  

2019 ◽  
Vol 11 (23) ◽  
pp. 2793
Author(s):  
Yujie Zheng ◽  
Weiwei Jia ◽  
Qiang Wang ◽  
Xu Huang

Biomass reflects the state of forest management and is critical for assessing forest benefits and carbon storage. The effective crown is the region above the lower limit of the forest crown that includes the maximum vertical distribution density of branches and leaves; this component plays an important role in tree growth. Adding the effective crown to biomass equations can enhance the accuracy of the derived biomass. Six sample plots in a larch plantation (ranging in area from 0.06 ha to 0.12 ha and in number of trees from 63 to 96) at the Mengjiagang forest farm in Huanan County, Jiamusi City, Heilongjiang Province, China, were analyzed in this study. Terrestrial laser scanning (TLS) was used to obtain three-dimensional point cloud data on the trees, from which crown parameters at different heights were extracted. These parameters were used to determine the position of the effective crown. Moreover, effective crown parameters were added to biomass equations with tree height as the sole variable to improve the accuracy of the derived individual-tree biomass estimates. The results showed that the minimum crown contact height was very similar to the effective crown height, and an increase in model accuracy was apparent (with R a 2 increasing from 0.846 to 0.910 and root-mean-square error (RMSE) decreasing from 0.372 kg to 0.286 kg). The optimal model for deriving biomass included tree height, crown length from minimum contact height, crown height from minimum contact height, and crown surface area from minimum contact height. The novelty of the article is that it improves the fit of individual-tree biomass models by adding crown-related variables and investigates how the accuracy of biomass estimation can be enhanced by using remote sensing methods without obtaining diameter at breast height.


Sign in / Sign up

Export Citation Format

Share Document