scholarly journals A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1

2020 ◽  
Vol 13 (12) ◽  
pp. 6265-6284
Author(s):  
Emmanuel Wyser ◽  
Yury Alkhimenkov ◽  
Michel Jaboyedoff ◽  
Yury Y. Podladchikov

Abstract. We present an efficient MATLAB-based implementation of the material point method (MPM) and its most recent variants. MPM has gained popularity over the last decade, especially for problems in solid mechanics in which large deformations are involved, such as cantilever beam problems, granular collapses and even large-scale snow avalanches. Although its numerical accuracy is lower than that of the widely accepted finite element method (FEM), MPM has proven useful for overcoming some of the limitations of FEM, such as excessive mesh distortions. We demonstrate that MATLAB is an efficient high-level language for MPM implementations that solve elasto-dynamic and elasto-plastic problems. We accelerate the MATLAB-based implementation of the MPM method by using the numerical techniques recently developed for FEM optimization in MATLAB. These techniques include vectorization, the use of native MATLAB functions and the maintenance of optimal RAM-to-cache communication, among others. We validate our in-house code with classical MPM benchmarks including (i) the elastic collapse of a column under its own weight; (ii) the elastic cantilever beam problem; and (iii) existing experimental and numerical results, i.e. granular collapses and slumping mechanics respectively. We report an improvement in performance by a factor of 28 for a vectorized code compared with a classical iterative version. The computational performance of the solver is at least 2.8 times greater than those of previously reported MPM implementations in Julia under a similar computational architecture.

2020 ◽  
Author(s):  
Emmanuel Wyser ◽  
Michel Jaboyedoff ◽  
Yury Y. Podladchikov

Abstract. In this contribution, we present an efficient MATLAB-based implementation of the material point method (MPM) and its most recent variants. MPM has gained popularity over the last decade, especially for problems in solid mechanics in which large deformations are involved, i.e., cantilever beam problems, granular collapses and even large-scale snow avalanches. Although its numerical accuracy is lower than that of the widely accepted finite element method (FEM), MPM has been proven useful in overcoming some of the limitations of FEM, such as excessive mesh distortions. We demonstrate that MATLAB is an efficient high-level language for MPM implementations that solve elasto-dynamic and elasto-plastic problems, such as the cantilever beam and granular collapses, respectively. We report a computational efficiency factor of 20 for a vectorized code compared to a classical iterative version. In addition, the numerical efficiency of the solver surpassed those of previously reported MPM implementations in Julia, ad minima 2.5 times faster under a similar computational architecture.


2021 ◽  
Author(s):  
Xingyue Li ◽  
Betty Sovilla ◽  
Camille Ligneau ◽  
Chenfanfu Jiang ◽  
Johan Gaume

<p>Erosion and entrainment are critical processes in gravity-driven mass flows like snow avalanches, as they can significantly change the flow mass and momentum and thus affect the flow dynamics. In snow avalanches, snow cover can be considerably eroded but only partially entrained into the flow. Differentiating erosion and entrainment gives more accurate prediction of the increased flow mass and offers information on eroded snow cover remaining on the slope, but is challenging in practice. This study investigates snow avalanche erosion and entrainment with the material point method, focusing on exploring various erosion mechanisms, differences in erosion and entrainment, and their possible influences on runout distance. By using different mechanical properties for the flowing snow, distinct erosion patterns are observed and the corresponding temporal evolutions of entrainment, erosion, and deposition in the erodible bed are examined. Erosion and entrainment require an appropriate combination of snow friction and cohesion of the bed. If cohesion and/or friction are too low, the bed will naturally be unstable. On the other hand, highly cohesive and frictional bed will prevent erosion. For intermediate values, erosion and entrainment can be notable, and the amount of eroded snow shows a clear negative correlation with snow friction and cohesion while the entrained snow does not demonstrate a strong tendency. Furthermore, the release and erodible bed lengths are varied to study their effect on erosion and entrainment propensity. It is found that the increase in the lengths of the release zone and erodible bed leads to more erosion and entrainment as expected, but not necessarily to a longer runout distance. In our simulations, the release and erodible bed lengths are positively and negatively correlated with the runout distance, respectively. This implies that the runout distance can have opposite trends with erosion and entrainment, which might be closely related to the energy change of the simulated avalanches from the outlet of the erodible bed to the final deposit. Our results shed more light into the erosion and entrainment mechanisms and may contribute to improve related parametrizations in large-scale avalanche dynamics models.</p>


Author(s):  
Georgi Derluguian

The author develops ideas about the origin of social inequality during the evolution of human societies and reflects on the possibilities of its overcoming. What makes human beings different from other primates is a high level of egalitarianism and altruism, which contributed to more successful adaptability of human collectives at early stages of the development of society. The transition to agriculture, coupled with substantially increasing population density, was marked by the emergence and institutionalisation of social inequality based on the inequality of tangible assets and symbolic wealth. Then, new institutions of warfare came into existence, and they were aimed at conquering and enslaving the neighbours engaged in productive labour. While exercising control over nature, people also established and strengthened their power over other people. Chiefdom as a new type of polity came into being. Elementary forms of power (political, economic and ideological) served as a basis for the formation of early states. The societies in those states were characterised by social inequality and cruelties, including slavery, mass violence and numerous victims. Nowadays, the old elementary forms of power that are inherent in personalistic chiefdom are still functioning along with modern institutions of public and private bureaucracy. This constitutes the key contradiction of our time, which is the juxtaposition of individual despotic power and public infrastructural one. However, society is evolving towards an ever more efficient combination of social initiatives with the sustainability and viability of large-scale organisations.


2012 ◽  
Vol 47 (6) ◽  
pp. 1-12 ◽  
Author(s):  
Christophe Dubach ◽  
Perry Cheng ◽  
Rodric Rabbah ◽  
David F. Bacon ◽  
Stephen J. Fink

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1765-1778
Author(s):  
Gregory J Budziszewski ◽  
Sharon Potter Lewis ◽  
Lyn Wegrich Glover ◽  
Jennifer Reineke ◽  
Gary Jones ◽  
...  

Abstract We have undertaken a large-scale genetic screen to identify genes with a seedling-lethal mutant phenotype. From screening ~38,000 insertional mutant lines, we identified >500 seedling-lethal mutants, completed cosegregation analysis of the insertion and the lethal phenotype for >200 mutants, molecularly characterized 54 mutants, and provided a detailed description for 22 of them. Most of the seedling-lethal mutants seem to affect chloroplast function because they display altered pigmentation and affect genes encoding proteins predicted to have chloroplast localization. Although a high level of functional redundancy in Arabidopsis might be expected because 65% of genes are members of gene families, we found that 41% of the essential genes found in this study are members of Arabidopsis gene families. In addition, we isolated several interesting classes of mutants and genes. We found three mutants in the recently discovered nonmevalonate isoprenoid biosynthetic pathway and mutants disrupting genes similar to Tic40 and tatC, which are likely to be involved in chloroplast protein translocation. Finally, we directly compared T-DNA and Ac/Ds transposon mutagenesis methods in Arabidopsis on a genome scale. In each population, we found only about one-third of the insertion mutations cosegregated with a mutant phenotype.


1978 ◽  
Vol 6 (8) ◽  
pp. 20-22
Author(s):  
Lyle A. Cox ◽  
James R. McGraw ◽  
Charles S. Wetherell

2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document