snow avalanches
Recently Published Documents


TOTAL DOCUMENTS

462
(FIVE YEARS 105)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Vol 933 ◽  
Author(s):  
C. Tregaskis ◽  
C.G. Johnson ◽  
X. Cui ◽  
J.M.N.T. Gray

A blunt obstacle in the path of a rapid granular avalanche generates a bow shock (a jump in the avalanche thickness and velocity), a region of static grains upstream of the obstacle, and a grain-free region downstream. Here, it is shown that this interaction is qualitatively altered if the incline on which the avalanche is flowing is changed from smooth to rough. On a rough incline, the friction between the grains and the incline depends on the flow thickness and speed, which allows both rapid (supercritical) and slow (subcritical) steady uniform avalanches. For supercritical experimental flows, the material is diverted around a blunt obstacle by the formation of a bow shock and a static dead zone upstream of the obstacle. Downslope, a grain-free vacuum region forms, but, in contrast to flows on smooth beds, static levees form at the boundary between the vacuum region and the flow. In slower, subcritical, flows the flow is diverted smoothly around the dead zone and the obstacle without forming a bow shock. After the avalanche stops, signatures of the dead zone, levees and (in subcritical flows) a deeper region upslope of the obstacle are frozen into the deposit. To capture this behaviour, numerical simulations are performed with a depth-averaged avalanche model that includes frictional hysteresis and depth-averaged viscous terms, which are needed to accurately model the flowing and deposited regions. These results may be directly relevant to geophysical mass flows and snow avalanches, which flow over rough terrain and may impact barriers or other infrastructure.


2021 ◽  
Author(s):  
Ulises Francisco Giraldo Malca ◽  
Haniel Josue Torres Joaquin ◽  
Yeni Lucero Torres Tello ◽  
Nicole Dalia Reyes Quispe

Abstract The natural disasters generated by external geodynamics are geological risks that constantly modify landscapes, with a more significant occurrence in mountainous areas, affecting populations and registering many victims in densely populated places. This research analyzes the events in Huaraz province, of Ancash department, in the central Andes of Peru, to find relationships between their occurrence and geographical factors such as altitude, slopes, climate, and extreme meteorological events. An inventory of events was made and classified as floods, mass gravitational movements, waterlogging or snow avalanches. Using QGIS software, spreadsheets and digital elevation models, information on natural disasters, altitude levels, physiography, river basins, meteorological data, and earthquakes were analyzed. As a result, it was obtained that the Quechua region registered 60% of all events; the Santa River basin 76%; the wet season of the Peruvian Andes 78%; and places with slopes between 8% and 50% (wavy relief) 72% of disasters. It is concluded that the best conditions for these events are the intense rainfall and the undulating reliefs, predominant in the Quechua region. Likewise, floods are the disasters that register the most significant number and generate the most damage in Huaraz province. Finally, it was determined that high-intensity El Niño-Southern Oscillation processes do not necessarily increase the number of events for the study area.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1176
Author(s):  
Massimiliano Fazzini ◽  
Marco Cordeschi ◽  
Cristiano Carabella ◽  
Giorgio Paglia ◽  
Gianluca Esposito ◽  
...  

Mass movements processes (i.e., landslides and snow avalanches) play an important role in landscape evolution and largely affect high mountain environments worldwide and in Italy. The increase in temperatures, the irregularity of intense weather events, and several heavy snowfall events increased mass movements’ occurrence, especially in mountain regions with a high impact on settlements, infrastructures, and well-developed tourist facilities. In detail, the Prati di Tivo area, located on the northern slope of the Gran Sasso Massif (Central Italy), has been widely affected by mass movement phenomena. Following some recent damaging snow avalanches, a risk mitigation protocol has been activated to develop mitigation activities and land use policies. The main goal was to perform a multidisciplinary analysis of detailed climatic and geomorphological analysis, integrated with Geographic Information System (GIS) processing, to advance snow avalanche hazard assessment methodologies in mass movement-prone areas. Furthermore, this work could represent an operative tool for any geomorphological hazard studies in high mountainous environments, readily available to interested stakeholders. It could also provide a scientific basis for implementing sustainable territorial planning, emergency management, and loss-reduction measures.


2021 ◽  
Author(s):  
Bertil Trottet ◽  
Ron Simenhois ◽  
Grégoire Bobillier ◽  
Alec van Herwijnen ◽  
Chenfanfu Jiang ◽  
...  

Abstract Snow slab avalanches are released following anticrack propagation in highly porous weak snow layers buried below cohesive slabs. The volumetric collapse of the weak layer leads to the closure of crack faces followed by the onset of frictional contact. Here on the basis of snow fracture experiments, full-scale avalanche measurements, and numerical simulations, we report the existence of a transition from sub-Rayleigh anticrack to supershear crack propagation involving the Burridge-Andrews mechanism. Remarkably, this transition occurs even if the shear-to-normal stress ratio is lower than the static friction coefficient as a result of the loss of frictional resistance during collapse. This finding represents a new paradigm in our understanding of snow slab avalanches presenting fundamental similarities with strike-slip earthquakes.


2021 ◽  
Vol 15 (10) ◽  
pp. 4901-4907
Author(s):  
Paul Willem Leclercq ◽  
Andreas Kääb ◽  
Bas Altena

Abstract. For studying the flow of glaciers and their response to climate change it is important to detect glacier surges. Here, we compute within Google Earth Engine the normalized differences between winter maxima of Sentinel-1 C-band radar backscatter image stacks over subsequent years. We arrive at a global map of annual backscatter changes, which are for glaciers in most cases related to changed crevassing associated with surge-type activity. For our demonstration period 2018–2019 we detected 69 surging glaciers, with many of them not classified so far as surge type. Comparison with glacier surface velocities shows that we reliably find known surge activities. Our method can support operational monitoring of glacier surges and some other special events such as large rock and snow avalanches.


2021 ◽  
Vol 15 (10) ◽  
pp. 4845-4852
Author(s):  
Hippolyte Kern ◽  
Nicolas Eckert ◽  
Vincent Jomelli ◽  
Delphine Grancher ◽  
Michael Deschatres ◽  
...  

Abstract. Snow avalanches are a major component of the mountain cryosphere, but little is known about the factors controlling the variability of their deposit volumes. This study investigates the influence of avalanche path morphology on ca. 1500 deposit volumes recorded between 2003 and 2018 in 77 snow avalanche paths of the French Alps. Different statistical techniques show a slight but significant link between deposit volumes and path mean elevation and orientation, with contrasted patterns between winter and spring seasons. The limited and partially non-linear nature of this control may result from the combined influence on the genesis of deposit volumes of mean path activity, climate conditions, and mechanical thresholds determining avalanche release.


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 114
Author(s):  
Matej Masný ◽  
Karol Weis ◽  
Marek Biskupič

UAV-based photogrammetry has many applications today. Measuring of snow depth using Structure-from-Motion (SfM) techniques is one of them. Determining the depth of snow is very important for a wide range of scientific research activities. In the alpine environment, this information is crucial, especially in the sphere of risk management (snow avalanches). The main aim of this study is to test the applicability of fixed-wing UAV with RTK technology in real alpine conditions to determine snow depth. The territory in West Tatras as a part of Tatra Mountains (Western Carpathians) in the northern part of Slovakia was analyzed. The study area covers more than 1.2 km2 with an elevation of almost 900 m and it is characterized by frequent occurrence of snow avalanches. It was found that the use of different filtering modes (at the level point cloud generation) had no distinct (statistically significant) effect on the result. On the other hand, the significant influence of vegetation characteristics was confirmed. Determination of snow depth based on seasonal digital surface model subtraction can be affected by the process of vegetation compression. The results also point on the importance of RTK methods when mapping areas where it is not possible to place ground control points.


2021 ◽  
Author(s):  
Louis Védrine ◽  
Xingyue Li ◽  
Johan Gaume

Abstract. Mountain forests provide natural protection against avalanches. They can both prevent avalanche formation in release zones and reduce avalanche mobility in runout areas. Although the braking effect of forests has been previously explored through global statistical analyses on documented avalanches, little is known about the mechanism of snow detrainment in forests for small and medium avalanches. In this study, we investigate the detrainment and braking of snow avalanches in forested terrain, by performing three-dimensional simulations using the Material Point Method (MPM) and a large strain elastoplastic snow constitutive model based on Critical State Soil Mechanics. First, the snow internal friction is evaluated using existing field measurements based on the detrainment mass, showing the feasibility of the numerical framework and offering a reference case for further exploration of different snow types. Then, we systematically investigate the influence of snow properties and forest parameters on avalanche characteristics. Our results suggest that, for both dry and wet avalanches, the detrainment mass decreases with the square of the avalanche front velocity before it reaches a plateau value. Furthermore, the detrainment mass significantly depends on snow properties. It can be as much as ten times larger for wet snow compared to dry snow. By examining the effect of forest configurations, it is found that forest density and tree diameter have cubic and square relations with the detrainment mass, respectively. The outcomes of this study may contribute to the development of improved formulations of avalanche–forest interaction models in popular operational simulation tools and thus improve hazard assessment for alpine geophysical mass flows in forested terrain.


Sign in / Sign up

Export Citation Format

Share Document