scholarly journals Referee report for "Efficient Bayesian inference for large chaotic dynamical systems"

2020 ◽  
Author(s):  
Anonymous
2021 ◽  
Vol 14 (7) ◽  
pp. 4319-4333
Author(s):  
Sebastian Springer ◽  
Heikki Haario ◽  
Jouni Susiluoto ◽  
Aleksandr Bibov ◽  
Andrew Davis ◽  
...  

Abstract. Estimating parameters of chaotic geophysical models is challenging due to their inherent unpredictability. These models cannot be calibrated with standard least squares or filtering methods if observations are temporally sparse. Obvious remedies, such as averaging over temporal and spatial data to characterize the mean behavior, do not capture the subtleties of the underlying dynamics. We perform Bayesian inference of parameters in high-dimensional and computationally demanding chaotic dynamical systems by combining two approaches: (i) measuring model–data mismatch by comparing chaotic attractors and (ii) mitigating the computational cost of inference by using surrogate models. Specifically, we construct a likelihood function suited to chaotic models by evaluating a distribution over distances between points in the phase space; this distribution defines a summary statistic that depends on the geometry of the attractor, rather than on pointwise matching of trajectories. This statistic is computationally expensive to simulate, compounding the usual challenges of Bayesian computation with physical models. Thus, we develop an inexpensive surrogate for the log likelihood with the local approximation Markov chain Monte Carlo method, which in our simulations reduces the time required for accurate inference by orders of magnitude. We investigate the behavior of the resulting algorithm with two smaller-scale problems and then use a quasi-geostrophic model to demonstrate its large-scale application.


2020 ◽  
Author(s):  
Sebastian Springer ◽  
Heikki Haario ◽  
Jouni Susiluoto ◽  
Aleksandr Bibov ◽  
Andrew Davis ◽  
...  

Abstract. Estimating parameters of chaotic geophysical models is challenging due to these models' inherent unpredictability. With temporally sparse long-range observations, these models cannot be calibrated using standard least squares or filtering methods. Obvious remedies, such as averaging over temporal and spatial data to characterize the mean behavior, do not capture the subtleties of the underlying dynamics. We perform Bayesian inference of parameters in high-dimensional and computationally demanding chaotic dynamical systems by combining two approaches: (i) measuring model-data mismatch by comparing chaotic attractors, and (ii) mitigating the computational cost of inference by using surrogate models. Specifically, we construct a likelihood function suited to chaotic models by evaluating a distribution over distances between points in the phase space; this distribution defines a summary statistic that depends on the attractor's geometry, rather than on pointwise matching of trajectories. This statistic is computationally expensive to simulate, compounding the usual challenges of Bayesian computation with physical models. Thus we develop an inexpensive surrogate for the log-likelihood via local approximation Markov chain Monte Carlo, which in our simulations reduces the time required for accurate inference by orders of magnitude. We investigate the behavior of the resulting algorithm on model problems, and then use a quasi-geostrophic model to demonstrate its large-scale application.


2001 ◽  
Vol 08 (02) ◽  
pp. 137-146 ◽  
Author(s):  
Janusz Szczepański ◽  
Zbigniew Kotulski

Pseudorandom number generators are used in many areas of contemporary technology such as modern communication systems and engineering applications. In recent years a new approach to secure transmission of information based on the application of the theory of chaotic dynamical systems has been developed. In this paper we present a method of generating pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of extreme sensitivity of trajectories to small changes of initial conditions, since the generated bits are associated with trajectories in an appropriate way. To ensure good statistical properties of the CPRBG (which determine its quality) we assume that the dynamical systems used are also ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical situations, we suggest a physical model of CPRNG.


1991 ◽  
Vol 05 (14) ◽  
pp. 2323-2345 ◽  
Author(s):  
R.E. AMRITKAR ◽  
P.M. GADE

We discuss different methods of characterizing the loss of memory of initial conditions in chaotic dynamical systems.


Sign in / Sign up

Export Citation Format

Share Document