scholarly journals Potential climate change impacts on the water balance of regional unconfined aquifer systems in south-western Australia

2012 ◽  
Vol 16 (12) ◽  
pp. 4581-4601 ◽  
Author(s):  
R. Ali ◽  
D. McFarlane ◽  
S. Varma ◽  
W. Dawes ◽  
I. Emelyanova ◽  
...  

Abstract. This study assesses climate change impacts on water balance components of the regional unconfined aquifer systems in south-western Australia, an area that has experienced a marked decline in rainfall since the mid 1970s and is expected to experience further decline due to global warming. Compared with the historical period of 1975 to 2007, reductions in the mean annual rainfall of between 15 and 18 percent are expected under a dry variant of the 2030 climate which will reduce recharge rates by between 33 and 49 percent relative to that under the historical period climate. Relative to the historical climate, reductions of up to 50 percent in groundwater discharge to the ocean and drainage systems are also expected. Sea-water intrusion is likely in the Peel-Harvey Area under the dry future climate and net leakage to confined systems is projected to decrease by up to 35 percent which will cause reduction in pressures in confined systems under current abstraction. The percentage of net annual recharge consumed by groundwater storage, and ocean and drainage discharges is expected to decrease and percentage of net annual recharge consumed by pumping and net leakage to confined systems to increase under median and dry future climates. Climate change is likely to significantly impact various water balance components of the regional unconfined aquifer systems of south-western Australia. We assess the quantitative climate change impact on the different components (the amounts) using the most widely used GCMs in combination with dynamically linked recharge and physically distributed groundwater models.

2012 ◽  
Vol 9 (5) ◽  
pp. 6367-6408 ◽  
Author(s):  
R. Ali ◽  
D. McFarlane ◽  
S. Varma ◽  
W. Dawes ◽  
I. Emelyanova ◽  
...  

Abstract. This study assessed climate change impacts on water balance components of the regional unconfined aquifer systems in South-Western Australia, an area that has experienced a marked decline in rainfall since the mid 1970s and is expected to experience further decline due to global warming. Compared with the historical period of 1975 to 2007, reductions in the mean annual rainfall of between 15 and 18% are expected under a dry variant of the 2030 climate which will reduce recharge rates by between 33 and 49% relative to that under the historical period climate. Relative to the historical climate, reductions of up to 50% in groundwater discharge to the ocean and drainage systems are also expected. Sea-water intrusion is likely in the Peel-Harvey area under the dry future climate and net leakage to confined systems is projected to decrease by up to 35% which will cause reduction in pressures in confined systems under current abstraction. The percentage of net annual recharge consumed by groundwater storage, and ocean and drainage discharges is expected to decrease and percentage of net annual recharge consumed by pumping and net leakage to confined systems to increase under median and dry future climates.


2016 ◽  
Vol 8 ◽  
pp. 182-197 ◽  
Author(s):  
Olkeba Tolessa Leta ◽  
Aly I. El-Kadi ◽  
Henrietta Dulai ◽  
Kariem A. Ghazal

2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2012 ◽  
Vol 475 ◽  
pp. 488-498 ◽  
Author(s):  
Don McFarlane ◽  
Roy Stone ◽  
Sasha Martens ◽  
Jonathan Thomas ◽  
Richard Silberstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document