scholarly journals Potential climate change impacts on the water balance of regional unconfined aquifer systems in South-Western Australia

2012 ◽  
Vol 9 (5) ◽  
pp. 6367-6408 ◽  
Author(s):  
R. Ali ◽  
D. McFarlane ◽  
S. Varma ◽  
W. Dawes ◽  
I. Emelyanova ◽  
...  

Abstract. This study assessed climate change impacts on water balance components of the regional unconfined aquifer systems in South-Western Australia, an area that has experienced a marked decline in rainfall since the mid 1970s and is expected to experience further decline due to global warming. Compared with the historical period of 1975 to 2007, reductions in the mean annual rainfall of between 15 and 18% are expected under a dry variant of the 2030 climate which will reduce recharge rates by between 33 and 49% relative to that under the historical period climate. Relative to the historical climate, reductions of up to 50% in groundwater discharge to the ocean and drainage systems are also expected. Sea-water intrusion is likely in the Peel-Harvey area under the dry future climate and net leakage to confined systems is projected to decrease by up to 35% which will cause reduction in pressures in confined systems under current abstraction. The percentage of net annual recharge consumed by groundwater storage, and ocean and drainage discharges is expected to decrease and percentage of net annual recharge consumed by pumping and net leakage to confined systems to increase under median and dry future climates.

2012 ◽  
Vol 16 (12) ◽  
pp. 4581-4601 ◽  
Author(s):  
R. Ali ◽  
D. McFarlane ◽  
S. Varma ◽  
W. Dawes ◽  
I. Emelyanova ◽  
...  

Abstract. This study assesses climate change impacts on water balance components of the regional unconfined aquifer systems in south-western Australia, an area that has experienced a marked decline in rainfall since the mid 1970s and is expected to experience further decline due to global warming. Compared with the historical period of 1975 to 2007, reductions in the mean annual rainfall of between 15 and 18 percent are expected under a dry variant of the 2030 climate which will reduce recharge rates by between 33 and 49 percent relative to that under the historical period climate. Relative to the historical climate, reductions of up to 50 percent in groundwater discharge to the ocean and drainage systems are also expected. Sea-water intrusion is likely in the Peel-Harvey Area under the dry future climate and net leakage to confined systems is projected to decrease by up to 35 percent which will cause reduction in pressures in confined systems under current abstraction. The percentage of net annual recharge consumed by groundwater storage, and ocean and drainage discharges is expected to decrease and percentage of net annual recharge consumed by pumping and net leakage to confined systems to increase under median and dry future climates. Climate change is likely to significantly impact various water balance components of the regional unconfined aquifer systems of south-western Australia. We assess the quantitative climate change impact on the different components (the amounts) using the most widely used GCMs in combination with dynamically linked recharge and physically distributed groundwater models.


2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2012 ◽  
Vol 475 ◽  
pp. 488-498 ◽  
Author(s):  
Don McFarlane ◽  
Roy Stone ◽  
Sasha Martens ◽  
Jonathan Thomas ◽  
Richard Silberstein ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207370 ◽  
Author(s):  
Wentian He ◽  
J. Y. Yang ◽  
B. Qian ◽  
C. F. Drury ◽  
G. Hoogenboom ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


2014 ◽  
Vol 18 (9) ◽  
pp. 3591-3614 ◽  
Author(s):  
S. A. Islam ◽  
M. A. Bari ◽  
A. H. M. F. Anwar

Abstract. Reduction of rainfall and runoff in recent years across southwest Western Australia (SWWA) has attracted attention to the climate change impact on water resources and water availability in this region. In this paper, the hydrologic impact of climate change on the Murray–Hotham catchment in SWWA has been investigated using a multi-model ensemble approach through projection of rainfall and runoff for the periods mid (2046–2065) and late (2081–2100) this century. The Land Use Change Incorporated Catchment (LUCICAT) model was used for hydrologic modelling. Model calibration was performed using (5 km) grid rainfall data from the Australian Water Availability Project (AWAP). Downscaled and bias-corrected rainfall data from 11 general circulation models (GCMs) for Intergovernmental Panel on Climate Change (IPCC) emission scenarios A2 and B1 was used in LUCICAT model to derive rainfall and runoff scenarios for 2046–2065 (mid this century) and 2081–2100 (late this century). The results of the climate scenarios were compared with observed past (1961–1980) climate. The mean annual rainfall averaged over the catchment during recent time (1981–2000) was reduced by 2.3% with respect to the observed past (1961–1980) and the resulting runoff reduction was found to be 14%. Compared to the past, the mean annual rainfall reductions, averaged over 11 ensembles and over the period for the catchment for A2 scenario are 13.6 and 23.6% for mid and late this century respectively while the corresponding runoff reductions are 36 and 74%. For B1 scenario, the rainfall reductions were 11.9 and 11.6% for mid and late this century and the corresponding runoff reductions were 31 and 38%. Spatial distribution of rainfall and runoff changes showed that the rate of changes were higher in high rainfall areas compared to low rainfall areas. Temporal distribution of rainfall and runoff indicate that high rainfall events in the catchment reduced significantly and further reductions are projected, resulting in significant runoff reductions. A catchment scenario map has been developed by plotting decadal runoff reduction against corresponding rainfall reduction at four gauging stations for the observed and projected periods. This could be useful for planning future water resources in the catchment. Projection of rainfall and runoff made based on the GCMs varied significantly for the time periods and emission scenarios. Hence, the considerable uncertainty involved in this study though ensemble mean was used to explain the findings.


2020 ◽  
Author(s):  
Catalina Jerez Toledo ◽  
Ximena Vargas Mesa

<p>The Southern Ice Field (CHS) corresponds to one of the largest continental ice plains, representing a water source for the entire globe. It extends from 40°20' S to 51°30' S, covering an area of approximately 16.800 km<sup>2</sup> and consisting of 49 glaciers distributed in the southern territory of Chile and part of the Argentine Patagonia. Due to climatic change, the CHS has been affected, like all the ecosystems that compose the planet, generating disturbances in their natural state, consequently, the systems that constitute the CHS tend to look for a new balance. However, the new state(s) of equilibrium can present a great deal of variability, which is why the Intergovernmental Panel on Climate Change (IPCC) has drawn up the Representative Concentration Pathways (RCP), which aim to account for the effects of climate change by representing the total radiative forcing calculated for the year 2100 and including the net effect of Greenhouse Gases (GHG), in addition to other anthropogenic forcing. Based on this, the main objective of the present study is to give an account of a projection and simulation of the water balance in the CHS, informing about the physical processes occurred in the historical period (1970 - 2005), the current period considering a near past and future (2006 - 2050) and a projection to the distant future (2051 - 2100). The simulation of the water balance considers two General Circulation Models (GCMs: MPI-ESM and CSIRO-Mk3-6-0), which are numerical models frequently implemented to simulate the effects of climate change. These models are evaluated under two RCP scenarios 4.5 and 8.5, giving the most unfavorable results under the latter scenario when evaluating the CSIRO-Mk3-6-0 model, since temperature increases of up to 8°C and an oscillating precipitation regime are observed. On the other hand, the MPI-ESM model indicates increases of 1.5°C and 2.5°C accordingly to each scenario and decreases of ± 1/3 of the current observed precipitation. Both models, when evaluated in the previously mentioned scenarios, indicate that the basins that make up the CHS present an emptying to a greater or lesser degree according to the scenario, for which reason, the ice mass that makes up the CHS will follow the behavior it has experienced up to now and will continue to detach itself. To this last, we must add the effect of the decreases in precipitations that reach an average deficit of 30 mm by year 2050 and increases in temperature that exceed the values reported by the IPCC (2019), which they look for to control the effects of the climatic change in the present situation.</p>


2020 ◽  
Author(s):  
Annesofie Jakosben ◽  
Hans Jørgen Henriksen ◽  
Ernesto Pasten-Zapata ◽  
Torben Sonnenborg ◽  
Lars Troldborg

<p>By use of transient and distributed groundwater-surface water flow models, simulated time series of stream discharge and groundwater level for monitoring networks, groundwater bodies and river reaches have been analysed for a historical period and four different future scenarios toward 2100 in two large-scale catchments in Denmark. The purpose of the climate scenarios has been to qualify the existing knowledge on how future climate change most likely will impact hydrology, groundwater status and Ecological Quality Elements (EQR- Ecological flow in rivers). Another purpose has been to identify whether foreseen climate changes will be detected by the surface water and groundwater monitoring networks, and to which degree the River Basin Management Plan measures for supporting the goal of good quantitative status are robust to the projected changes in water balance and ecological flow. The developed hydrological models were run with climate inputs based on selected RCP4.5 and RCP8.5 climate model runs (RCP8.5 wet, median, dry and RCP4.5 median). Changes in groundwater quantitative status and ecological flow metrics were calculated based on 30-year model runs driven by RCP8.5 for 2071-2100 (RCP4.5 for 2041-70) and compared to 1981-2010.</p><p>Overall the four scenarios results in very significant water balance changes with increased precipitation: 3% to 27%, evapotranspiration: 6% to 17%, groundwater recharge: 0% to 49%, drainage flow: 0% to 71%, baseflow: 0% to 31% and overland flow: 16% to 281%. For one catchment an increase in abstraction of 23% to 171% due to an increase in irrigation demand by 36% to 113% is foreseen. The results have wide implications for groundwater flooding risks, quantitative status and ecological flow metrics. Most sensitive is changes in ecological flow conditions in rivers for fish, showing a relative high probability for decreased state for 10-20% of the reaches for the RCP8.5 wet and dry scenarios due to more extreme hydrological regimes toward 2071-2100. Maximum monthly runoff is increased for winter months by 100% for RCP8.5 wet and median scenarios and around 10% for RCP8.5 dry scenario. Annual maximum daily flows is simulated to increase by up to a factor of five, and late summer low flows decreased.</p><p>Impacts on groundwater levels and water balances of groundwater bodies will be significant, with increased seasonal fluctuations and also increased maximum and decreased minimum groundwater levels for 30 year periods for 2071-2100 compared to 1981-2010.</p><p>More rain, both when we look back on historical data and when we look forward with latest climate projections will result in more frequent flooding from groundwater and streams in the future. At the same time, the temperature and thus evapotranspiration rises. This means that in the long term we will have increased challenges with drought and increased irrigation demands on sandy soils while evapotranspiration will also increase on the clayey soils. This will result in greater fluctuation in the flow and groundwater levels between winters and summers, and between wet and dry years, challenging sustainable groundwater abstraction and maintaining good quantitative status of groundwater bodies.</p>


Sign in / Sign up

Export Citation Format

Share Document