groundwater temperature
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 2)

Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Esteban Caligaris ◽  
Margherita Agostini ◽  
Rudy Rossetto

Managed Aquifer Recharge (MAR), the intentional recharge of aquifers, has surged worldwide in the last 60 years as one of the options to preserve and increase water resources availability. However, estimating the extent of the area impacted by the recharge operations is not an obvious task. In this descriptive study, we monitored the spatiotemporal variation of the groundwater temperature in a phreatic aquifer before and during MAR operations, for 15 days, at the LIFE REWAT pilot infiltration basin using surface water as recharge source. The study was carried out in the winter season, taking advantage of the existing marked difference in temperature between the surface water (cold, between 8 and 13 °C, and in quasi-equilibrium with the air temperature) and the groundwater temperature, ranging between 10 and 18 °C. This difference in heat carried by groundwater was then used as a tracer. Results show that in the experiment the cold infiltrated surface water moved through the aquifer, allowing us to identify the development and extension in two dimensions of the recharge plume resulting from the MAR infiltration basin operations. Forced convection is the dominant heat transport mechanism. Further data, to be gathered at high frequency, and modeling analyses using the heat distribution at different depths are needed to identify the evolution of the recharge bulb in the three-dimensional space.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 107
Author(s):  
Ana D. Maldonado ◽  
María Morales ◽  
Francisco Navarro ◽  
Francisco Sánchez-Martos ◽  
Pedro A. Aguilera

In semiarid areas, precipitations usually appear in the form of big and brief floods, which affect the aquifer through water infiltration, causing groundwater temperature changes. These changes may have an impact on the physical, chemical and biological processes of the aquifer and, thus, modeling the groundwater temperature variations associated with stormy precipitation episodes is essential, especially since this kind of precipitation is becoming increasingly frequent in semiarid regions. In this paper, we compare the predictive performance of two popular tools in statistics and machine learning, namely Bayesian networks (BNs) and artificial neural networks (ANNs), in modeling groundwater temperature variation associated with precipitation events. More specifically, we trained a total of 2145 ANNs with different node configurations, from one to five layers. On the other hand, we trained three different BNs using different structure learning algorithms. We conclude that, while both tools are equivalent in terms of accuracy for predicting groundwater temperature drops, the computational cost associated with the estimation of Bayesian networks is significantly lower, and the resulting BN models are more versatile and allow a more detailed analysis.


2021 ◽  
Vol 930 (1) ◽  
pp. 012048
Author(s):  
E E Tantama ◽  
M A Kumara ◽  
D P E Putra ◽  
G I Marliyani

Abstract The people in the Randublatung basin (Grobogan, Blora, and Bojonegoro Regencies) using groundwater for daily needs and agriculture activity. As the initial step of basin-based groundwater management, it is necessary to understand the groundwater potential in this area: pattern and direction of groundwater flow and groundwater physical-chemical properties (pH, temperature, total dissolved solids, and electrical conductivity). This research aims to analyze the pattern and directions of groundwater flow, the physical-chemical properties, and the correlation between the two. This research method is field measurement of 45 different spots of dug wells in the Randublatung basin. Our results indicate that the pattern and direction of groundwater flow in the Randublatung basin are heading to Bengawan Solo River and then following the river’s flow. The groundwater physical-chemical properties measured: pH value is 6.8 on average, the temperature is 28.9 °C on average, TDS concentration is 409 mg/L average, and electrical conductivity rate is 843 μS/cm average. There is no significant correlation between groundwater flow with pH value and groundwater temperature. However, groundwater TDS concentration and electrical conductivity rate in the Randublatung basin increase as groundwater flows to the Bengawan Solo River, which is affected by the minerals of aquifer rocks (alluvial deposits).


2021 ◽  
Vol 9 (11) ◽  
pp. 102-110
Author(s):  
Mahamat Nour Abdallah ◽  
◽  
Moussa Abderamane ◽  
Abderamane Hamit ◽  
Adil Bangba Frederic ◽  
...  

The province of Tandjile is one of the 23 provinces of the Republic of Chad. The drinking water supply rate in this region remains low. Part of the population obtains its water supply through open wells and / or surface water. Climatic and anthropogenic variations in recent years have shown how much groundwater can be influenced both in terms of its quality and its quantity to be used. The objective of this study is to provide knowledge on the state of the hydrodynamic and hydrochemical parameters of the aquifer of the department of Tandjile-Est to help decision-makers in their approach. This study is based mainly on existing data collected in Chadian institutions and literary journals. The analysis of these data showed that the lithology is represented by clayey, sandy, lateritic formations and clay-sandy mixtures. The aquifers are sandy and sandy-clayey. The groundwater temperature values are in equilibrium with those of the air, the pH shows values close to neutrality and the electrical conductivity below standards (Chad, WHO). The groundwater in the study area is not very mineralized and the concentrations of elements indicating contamination (nitrates, chloride, etc.) are clearly in traces. Chemical analyzes revealed two chemical facies: calcium and magnesium bicarbonate and sodium and / or potassium bicarbonate.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6241
Author(s):  
Manon Bulté ◽  
Thierry Duren ◽  
Olivier Bouhon ◽  
Estelle Petitclerc ◽  
Mathieu Agniel ◽  
...  

A numerical model was built using FEFLOW® to simulate groundwater flow and heat transport in a confined aquifer in Brussels where two Aquifer Thermal Energy Storage (ATES) systems were installed. These systems are operating in adjacent buildings and exploit the same aquifer made up of mixed sandy and silty sublayers. The model was calibrated for groundwater flow and partially for heat transport. Several scenarios were considered to determine if the two ATES systems were interfering. The results showed that a significant imbalance between the injection of warm and cold water in the first installed ATES system led to the occurrence of a heat plume spreading more and more over the years. This plume eventually reached the cold wells of the same installation. The temperature, therefore, increased in warm and cold wells and the efficiency of the building’s cooling system decreased. When the second ATES system began to be operational, the simulated results showed that, even if the heat plumes of the two systems had come into contact, the influence of the second system on the first one was negligible during the first two years of joint operation. For a longer modeled period, simulated results pointed out that the joint operation of the two ATES systems was not adapted to balance, in the long term, the quantity of warm and cold water injected in the aquifer. The groundwater temperature would rise inexorably in the warm and cold wells of both systems. The heat plumes would spread more and more over the years at the expense of the efficiency of both systems, especially concerning building’s cooling with stored cold groundwater.


Author(s):  
Alberto Previati ◽  
Giovanni B. Crosta

AbstractUrban areas are major contributors to the alteration of the local atmospheric and groundwater environment. The impact of such changes on the groundwater thermal regime is documented worldwide by elevated groundwater temperature in city centers with respect to the surrounding rural areas. This study investigates the subsurface urban heat island (SUHI) in the aquifers beneath the Milan city area in northern Italy, and assesses the natural and anthropogenic controls on groundwater temperatures within the urban area by analyzing groundwater head and temperature records acquired in the 2016–2020 period. This analysis demonstrates the occurrence of a SUHI with up to 3 °C intensity and reveals a correlation between the density of building/subsurface infrastructures and the mean annual groundwater temperature. Vertical heat fluxes to the aquifer are strongly related to the depth of the groundwater and the density of surface structures and infrastructures. The heat accumulation in the subsurface is reflected by a constant groundwater warming trend between +0.1 and + 0.4 °C/year that leads to a gain of 25 MJ/m2 of thermal energy per year in the shallow aquifer inside the SUHI area. Future monitoring of groundwater temperatures, combined with numerical modeling of coupled groundwater flow and heat transport, will be essential to reveal what this trend is controlled by and to make predictions on the lateral and vertical extent of the groundwater SUHI in the study area.


2021 ◽  
Vol 25 (7) ◽  
pp. 4147-4158
Author(s):  
Stein Bondevik ◽  
Asgeir Sorteberg

Abstract. Pore pressure is crucial in triggering debris slides and flows. Here we present measurements of groundwater pore pressure and temperature recorded by a piezometer 1.6 m below the surface on a slope susceptible to debris flows in western Norway. One of the largest oscillations in data collected over 4 years coincided with a debris flow event on the slope that occurred during storm Hilde on 15–16 November 2013. More than 100 landslides were registered during the storm. Precipitation totaled about 80–100 mm in 24 h, locally up to 129 mm, and an additional trigger factor for the landslides was a rapid rise in air temperature that caused snowmelt. In the studied slope a fraction of the precipitation first fell as snow. On 15 November, the groundwater level in the hillslope rose by 10 cm/h and reached 44 cm below the surface. At the same time, air temperature rose from 0 ∘C to over 8 ∘C, and the groundwater temperature dropped by 1.5 ∘C. The debris flow probably occurred late in the evening of 15 November, when the groundwater level reached its peak. Measurements of the groundwater in the hillslope in the period 2010–2013 show that the event in 2013 was not exceptional. Storm Dagmar on 25–26 December 2011 caused a similar rise in groundwater level but did not trigger any failures. The data suggest that during heavy rainstorms the slope is in a critical state for a landslide to be triggered for a short time – about 4–5 h.


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


Author(s):  
Rodolfo Perego ◽  
Sebastian Pera ◽  
Jacopo Boaga ◽  
Monica Bulgheroni ◽  
Giorgia Dalla Santa ◽  
...  

AbstractThe progressive electrification of the building conditioning sector in recent years has greatly contributed to reducing greenhouse gas emissions by using renewable energy sources, particularly shallow geothermal energy. This energy can be exploited through open and closed shallow geothermal systems (SGS), and their performances greatly depend on the ground/groundwater temperature, which can be affected by both natural and anthropogenic phenomena. The present study proposes an approach to characterize aquifers affected by high SGS exploitation (not simulated in this work). Characterization of the potential hydro/thermogeological natural state is necessary to understand the regional flow and heat transport, and to identify local thermal anomalies. Passive microseismic and groundwater monitoring were used to assess the shape and thermal status of the aquifer; numerical modeling in both steady-state and transient conditions allowed understanding of the flow and heat transport patterns. Two significant thermal anomalies were detected in a fluvio-glacial aquifer in southern Switzerland, one created by river water exfiltration and one of anthropogenic nature. A favorable time lag of 110 days between river and groundwater temperature and an urban hot plume produced by underground structures were observed. These thermal anomalies greatly affect the local thermal status of the aquifer and consequently the design and efficiency of current and future SGS. Results show that the correct characterization of the natural thermo-hydrogeological status of an aquifer is a fundamental basis for determining the impact of boundary conditions and to provide initial conditions required to perform reliable local thermal sustainability assessments, especially where high SGS exploitation occurs.


2021 ◽  
Vol 25 (6) ◽  
pp. 3053-3070
Author(s):  
Fabien Koch ◽  
Kathrin Menberg ◽  
Svenja Schweikert ◽  
Cornelia Spengler ◽  
Hans Jürgen Hahn ◽  
...  

Abstract. In Germany, 70 % of the drinking water demand is met by groundwater, for which the quality is the product of multiple physical–chemical and biological processes. As healthy groundwater ecosystems help to provide clean drinking water, it is necessary to assess their ecological conditions. This is particularly true for densely populated urban areas, where faunistic groundwater investigations are still scarce. The aim of this study is, therefore, to provide a first assessment of the groundwater fauna in an urban area. Thus, we examine the ecological status of an anthropogenically influenced aquifer by analysing fauna in 39 groundwater monitoring wells in the city of Karlsruhe (Germany). For classification, we apply the groundwater ecosystem status index (GESI), in which a threshold of more than 70 % of crustaceans and less than 20 % of oligochaetes serves as an indication for very good and good ecological conditions. Our study reveals that only 35 % of the wells in the residential, commercial and industrial areas and 50 % of wells in the forested area fulfil these criteria. However, the study did not find clear spatial patterns with respect to land use and other anthropogenic impacts, in particular with respect to groundwater temperature. Nevertheless, there are noticeable differences in the spatial distribution of species in combination with abiotic groundwater characteristics in groundwater of the different areas of the city, which indicate that a more comprehensive assessment is required to evaluate the groundwater ecological status in more detail. In particular, more indicators, such as groundwater temperature, indicator species, delineation of site-specific characteristics and natural reference conditions should be considered.


Sign in / Sign up

Export Citation Format

Share Document