scholarly journals Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches

2018 ◽  
Vol 22 (9) ◽  
pp. 5021-5039 ◽  
Author(s):  
Aynom T. Teweldebrhan ◽  
John F. Burkhart ◽  
Thomas V. Schuler

Abstract. Parameter uncertainty estimation is one of the major challenges in hydrological modeling. Here we present parameter uncertainty analysis of a recently released distributed conceptual hydrological model applied in the Nea catchment, Norway. Two variants of the generalized likelihood uncertainty estimation (GLUE) methodologies, one based on the residuals and the other on the limits of acceptability, were employed. Streamflow and remote sensing snow cover data were used in conditioning model parameters and in model validation. When using the GLUE limit of acceptability (GLUE LOA) approach, a streamflow observation error of 25 % was assumed. Neither the original limits nor relaxing the limits up to a physically meaningful value yielded a behavioral model capable of predicting streamflow within the limits in 100 % of the observations. As an alternative to relaxing the limits, the requirement for the percentage of model predictions falling within the original limits was relaxed. An empirical approach was introduced to define the degree of relaxation. The result shows that snow- and water-balance-related parameters induce relatively higher streamflow uncertainty than catchment response parameters. Comparable results were obtained from behavioral models selected using the two GLUE methodologies.

2018 ◽  
Author(s):  
Aynom T. Tweldebrahn ◽  
John F. Burkhart ◽  
Thomas V. Schuler

Abstract. Parameter uncertainty estimation is one of the major challenges in hydrological modelling. Here we present parameter uncertainty analysis of a recently released distributed conceptual hydrological model applied in the Nea catchment, Norway. Two variants of the generalized likelihood uncertainty estimation (GLUE) methodologies, one based on the residuals and the other on the limits of acceptability, were employed. Streamflow and remote sensing snow cover data were used in conditioning model parameters and in model validation. When using the GLUE limit of acceptability (GLUE LOA) approach, a streamflow observation error of 25 % was assumed. Neither the original limits, nor relaxing the limits up to a physically meaningful value, yielded a behavioural model capable of predicting streamflow within the limits in 100 % of the observations. As an alternative to relaxing the limits; the requirement for percentage of model predictions falling within the original limits was relaxed. An empirical approach was introduced to define the degree of relaxation. The result shows that snow and water balance related parameters induce relatively higher streamflow uncertainty than catchment response parameters. Comparable results were obtained from behavioural models selected using the two GLUE methodologies.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 447 ◽  
Author(s):  
Huidae Cho ◽  
Jeongha Park ◽  
Dongkyun Kim

We tested four likelihood measures including two limits of acceptability and two absolute model residual methods within the generalized likelihood uncertainty estimation (GLUE) framework using the topography model (TOPMODEL). All these methods take the worst performance of all time steps as the likelihood of a model and none of these methods were successful in finding any behavioral models. We believe that reporting this failure is important because it shifted our attention from which likelihood measure to choose to why these four methods failed and how to improve these methods. We also observed how large parameter samples impact the performance of a hybrid uncertainty estimation method, isolated-speciation-based particle swarm optimization (ISPSO)-GLUE using the Nash–Sutcliffe (NS) coefficient. Unlike GLUE with random sampling, ISPSO-GLUE provides traditional calibrated parameters as well as uncertainty analysis, so over-conditioning the model parameters on the calibration data can affect its uncertainty analysis results. ISPSO-GLUE showed similar performance to GLUE with a lot less model runs, but its uncertainty bounds enclosed less observed flows. However, both methods failed in validation. These findings suggest that ISPSO-GLUE can be affected by over-calibration after a long evolution of samples and imply that there is a need for a likelihood measure that can better explain uncertainties from different sources without making statistical assumptions.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 317
Author(s):  
Fadhliani Umar ◽  
Zed Zulkafli ◽  
Badronnisa Yusuf ◽  
Siti Nurhidayu

Rainfall runoff modeling has been a subject of interest for decades due to a need to understand a catchment system for management, for example regarding extreme event occurrences such as flooding. Tropical catchments are particularly prone to the hazards of extreme precipitation and the internal drivers of change in the system, such as deforestation and land use change. A model framework of dynamic TOPMODEL, DECIPHeR v1—considering the flexibility, modularity, and portability—and Generalized Likelihood Uncertainty Estimation (GLUE) method are both used in this study. They reveal model performance for the streamflow simulation in a tropical catchment, i.e., the Kelantan River in Malaysia, that is prone to flooding and experiences high rates of land use change. Thirty-two years’ continuous simulation at a daily time scale simulation along with uncertainty analysis resulted in a Nash Sutcliffe Efficiency (NSE) score of 0.42 from the highest ranked parameter set, while 25.35% of the measurement falls within the uncertainty boundary based on a behavioral threshold NSE 0.3. The performance and behavior of the model in the continuous simulation suggests a limited ability of the model to represent the system, particularly along the low flow regime. In contrast, the simulation of eight peak flow events achieves moderate to good fit, with the four peak flow events simulation returning an NSE > 0.5. Nonetheless, the parameter scatter plot from both the continuous simulation and analyses of peak flow events indicate unidentifiability of all model parameters. This may be attributable to the catchment modeling scale. The results demand further investigation regarding the heterogeneity of parameters and calibration at multiple scales.


2014 ◽  
Vol 18 (6) ◽  
pp. 2393-2413 ◽  
Author(s):  
H. Sellami ◽  
I. La Jeunesse ◽  
S. Benabdallah ◽  
N. Baghdadi ◽  
M. Vanclooster

Abstract. In this study a method for propagating the hydrological model uncertainty in discharge predictions of ungauged Mediterranean catchments using a model parameter regionalization approach is presented. The method is developed and tested for the Thau catchment located in Southern France using the SWAT hydrological model. Regionalization of model parameters, based on physical similarity measured between gauged and ungauged catchment attributes, is a popular methodology for discharge prediction in ungauged basins, but it is often confronted with an arbitrary criterion for selecting the "behavioral" model parameter sets (Mps) at the gauged catchment. A more objective method is provided in this paper where the transferrable Mps are selected based on the similarity between the donor and the receptor catchments. In addition, the method allows propagating the modeling uncertainty while transferring the Mps to the ungauged catchments. Results indicate that physically similar catchments located within the same geographic and climatic region may exhibit similar hydrological behavior and can also be affected by similar model prediction uncertainty. Furthermore, the results suggest that model prediction uncertainty at the ungauged catchment increases as the dissimilarity between the donor and the receptor catchments increases. The methodology presented in this paper can be replicated and used in regionalization of any hydrological model parameters for estimating streamflow at ungauged catchment.


2014 ◽  
Vol 11 (1) ◽  
pp. 1253-1300 ◽  
Author(s):  
Z. He ◽  
F. Tian ◽  
H. C. Hu ◽  
H. V. Gupta ◽  
H. P. Hu

Abstract. Hydrological modeling depends on single- or multiple-objective strategies for parameter calibration using long time sequences of observed streamflow. Here, we demonstrate a diagnostic approach to the calibration of a hydrological model of an alpine area in which we partition the hydrograph based on the dominant runoff generation mechanism (groundwater baseflow, glacier melt, snowmelt, and direct runoff). The partitioning reflects the spatiotemporal variability in snowpack, glaciers, and temperature. Model parameters are grouped by runoff generation mechanism, and each group is calibrated separately via a stepwise approach. This strategy helps to reduce the problem of equifinality and, hence, model uncertainty. We demonstrate the method for the Tailan River basin (1324 km2) in the Tianshan Mountains of China with the help of a semi-distributed hydrological model (THREW).


Sign in / Sign up

Export Citation Format

Share Document