scholarly journals DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION

Author(s):  
Y. Xia ◽  
J. Tian ◽  
P. d’Angelo ◽  
P. Reinartz

3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199332
Author(s):  
Xintao Ding ◽  
Boquan Li ◽  
Jinbao Wang

Indoor object detection is a very demanding and important task for robot applications. Object knowledge, such as two-dimensional (2D) shape and depth information, may be helpful for detection. In this article, we focus on region-based convolutional neural network (CNN) detector and propose a geometric property-based Faster R-CNN method (GP-Faster) for indoor object detection. GP-Faster incorporates geometric property in Faster R-CNN to improve the detection performance. In detail, we first use mesh grids that are the intersections of direct and inverse proportion functions to generate appropriate anchors for indoor objects. After the anchors are regressed to the regions of interest produced by a region proposal network (RPN-RoIs), we then use 2D geometric constraints to refine the RPN-RoIs, in which the 2D constraint of every classification is a convex hull region enclosing the width and height coordinates of the ground-truth boxes on the training set. Comparison experiments are implemented on two indoor datasets SUN2012 and NYUv2. Since the depth information is available in NYUv2, we involve depth constraints in GP-Faster and propose 3D geometric property-based Faster R-CNN (DGP-Faster) on NYUv2. The experimental results show that both GP-Faster and DGP-Faster increase the performance of the mean average precision.


Author(s):  
E. Dall'Asta ◽  
R. Roncella

Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision.<br><br> The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed.<br><br> The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data.


2021 ◽  
Author(s):  
Farrel Athaillah Putra ◽  
Dwi Anggun Cahyati Jamil ◽  
Briliantino Abhista Prabandanu ◽  
Suhaili Faruq ◽  
Firsta Adi Pradana ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Jianfang Cao ◽  
Chenyan Wu ◽  
Lichao Chen ◽  
Hongyan Cui ◽  
Guoqing Feng

In today’s society, image resources are everywhere, and the number of available images can be overwhelming. Determining how to rapidly and effectively query, retrieve, and organize image information has become a popular research topic, and automatic image annotation is the key to text-based image retrieval. If the semantic images with annotations are not balanced among the training samples, the low-frequency labeling accuracy can be poor. In this study, a dual-channel convolution neural network (DCCNN) was designed to improve the accuracy of automatic labeling. The model integrates two convolutional neural network (CNN) channels with different structures. One channel is used for training based on the low-frequency samples and increases the proportion of low-frequency samples in the model, and the other is used for training based on all training sets. In the labeling process, the outputs of the two channels are fused to obtain a labeling decision. We verified the proposed model on the Caltech-256, Pascal VOC 2007, and Pascal VOC 2012 standard datasets. On the Pascal VOC 2012 dataset, the proposed DCCNN model achieves an overall labeling accuracy of up to 93.4% after 100 training iterations: 8.9% higher than the CNN and 15% higher than the traditional method. A similar accuracy can be achieved by the CNN only after 2,500 training iterations. On the 50,000-image dataset from Caltech-256 and Pascal VOC 2012, the performance of the DCCNN is relatively stable; it achieves an average labeling accuracy above 93%. In contrast, the CNN reaches an accuracy of only 91% even after extended training. Furthermore, the proposed DCCNN achieves a labeling accuracy for low-frequency words approximately 10% higher than that of the CNN, which further verifies the reliability of the proposed model in this study.


2020 ◽  
Vol 134 (4) ◽  
pp. 328-331 ◽  
Author(s):  
P Parmar ◽  
A-R Habib ◽  
D Mendis ◽  
A Daniel ◽  
M Duvnjak ◽  
...  

AbstractObjectiveConvolutional neural networks are a subclass of deep learning or artificial intelligence that are predominantly used for image analysis and classification. This proof-of-concept study attempts to train a convolutional neural network algorithm that can reliably determine if the middle turbinate is pneumatised (concha bullosa) on coronal sinus computed tomography images.MethodConsecutive high-resolution computed tomography scans of the paranasal sinuses were retrospectively collected between January 2016 and December 2018 at a tertiary rhinology hospital in Australia. The classification layer of Inception-V3 was retrained in Python using a transfer learning method to interpret the computed tomography images. Segmentation analysis was also performed in an attempt to increase diagnostic accuracy.ResultsThe trained convolutional neural network was found to have diagnostic accuracy of 81 per cent (95 per cent confidence interval: 73.0–89.0 per cent) with an area under the curve of 0.93.ConclusionA trained convolutional neural network algorithm appears to successfully identify pneumatisation of the middle turbinate with high accuracy. Further studies can be pursued to test its ability in other clinically important anatomical variants in otolaryngology and rhinology.


Sign in / Sign up

Export Citation Format

Share Document