scholarly journals ADVANCES AND CHALLENGES OF UAV SFM MVS PHOTOGRAMMETRY AND REMOTE SENSING: SHORT REVIEW

Author(s):  
E. F. Berra ◽  
M. V. Peppa

Abstract. Interest in Unnamed Aerial Vehicle (UAV)-sourced data and Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) photogrammetry has seen a dramatic expansion over the last decade, revolutionizing the fields of aerial remote sensing and mapping. This literature review provides a summary overview on the recent developments and applications of light-weight UAVs and on the widely-accepted SfM - MVS approach. Firstly, the advantages and limitations of UAV remote sensing systems are discussed, followed by an identification of the different UAV and miniaturised sensor models applied to numerous disciplines, showing the range of systems and sensor types utilised recently. Afterwards, a concise list of advantages and challenges of UAV SfM-MVS is provided and discussed. Overall, the accuracy and quality of the SfM-MVS-derived products (e.g. orthomosaics, digital surface model) depends on the quality of the UAV data set, characteristics of the study area and processing tools used. Continued development and investigation are necessary to better determine the quality, precision and accuracy of UAV SfM-MVS derived outputs.

1995 ◽  
Author(s):  
S. D. Lockwood ◽  
D. Hardin ◽  
G. J. Miller ◽  
C. Meesuk ◽  
P. R. Straus

2021 ◽  
Vol 13 (5) ◽  
pp. 860
Author(s):  
Yi-Chun Lin ◽  
Tian Zhou ◽  
Taojun Wang ◽  
Melba Crawford ◽  
Ayman Habib

Remote sensing platforms have become an effective data acquisition tool for digital agriculture. Imaging sensors onboard unmanned aerial vehicles (UAVs) and tractors are providing unprecedented high-geometric-resolution data for several crop phenotyping activities (e.g., canopy cover estimation, plant localization, and flowering date identification). Among potential products, orthophotos play an important role in agricultural management. Traditional orthophoto generation strategies suffer from several artifacts (e.g., double mapping, excessive pixilation, and seamline distortions). The above problems are more pronounced when dealing with mid- to late-season imagery, which is often used for establishing flowering date (e.g., tassel and panicle detection for maize and sorghum crops, respectively). In response to these challenges, this paper introduces new strategies for generating orthophotos that are conducive to the straightforward detection of tassels and panicles. The orthophoto generation strategies are valid for both frame and push-broom imaging systems. The target function of these strategies is striking a balance between the improved visual appearance of tassels/panicles and their geolocation accuracy. The new strategies are based on generating a smooth digital surface model (DSM) that maintains the geolocation quality along the plant rows while reducing double mapping and pixilation artifacts. Moreover, seamline control strategies are applied to avoid having seamline distortions at locations where the tassels and panicles are expected. The quality of generated orthophotos is evaluated through visual inspection as well as quantitative assessment of the degree of similarity between the generated orthophotos and original images. Several experimental results from both UAV and ground platforms show that the proposed strategies do improve the visual quality of derived orthophotos while maintaining the geolocation accuracy at tassel/panicle locations.


Sign in / Sign up

Export Citation Format

Share Document