scholarly journals TRAINING RECURRENT NEURAL NETWORKS FOR PARTICULATE MATTER CONCENTRATION PREDICTION

Author(s):  
C. J. Masinde ◽  
J. Gitahi ◽  
M. Hahn

Abstract. A high level of particulate matter in the atmosphere has an adverse long-term effect on human health. It has been associated with increased pulmonary tract and lung infections. It is more common in urban areas, especially megacities due to the confluence of industries and motorized machinery. Considering that most of the world’s population lives in urban areas, there is a need to monitor air pollution arising from particulate matter in order to ensure clean and safe air in cities in accordance with goal 11 of the Sustainable Development Goals. One way of doing this is through the use of Recurrent Neural Networks (RNN), which are suited for time varying data. Particulate matter concentration recorded by a network of low-cost sensors in Stuttgart is trained on three of the most popular RNN variants: Standard LSTM, Peephole LSTM and Gated Recurrent Unit. Two optimizers are used, Stochastic Gradient descent and Adam. Training is done on a single sensor and the optimum weights transferred and used in the prediction of other sensor values. This study concludes that Gated Recurrent Unit with Stochastic Gradient Descent is the most effective of the three variants in predicting particulate matter PM2.5 concentrations. In addition to this, weight transfer between sensors is not affected by temperature, wind direction, wind speed and geographic distance between sensors but rather by atmospheric pressure and the similarity of recorded Particulate matter levels.

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2761
Author(s):  
Vaios Ampelakiotis ◽  
Isidoros Perikos ◽  
Ioannis Hatzilygeroudis ◽  
George Tsihrintzis

In this paper, we present a handwritten character recognition (HCR) system that aims to recognize first-order logic handwritten formulas and create editable text files of the recognized formulas. Dense feedforward neural networks (NNs) are utilized, and their performance is examined under various training conditions and methods. More specifically, after three training algorithms (backpropagation, resilient propagation and stochastic gradient descent) had been tested, we created and trained an NN with the stochastic gradient descent algorithm, optimized by the Adam update rule, which was proved to be the best, using a trainset of 16,750 handwritten image samples of 28 × 28 each and a testset of 7947 samples. The final accuracy achieved is 90.13%. The general methodology followed consists of two stages: the image processing and the NN design and training. Finally, an application has been created that implements the methodology and automatically recognizes handwritten logic formulas. An interesting feature of the application is that it allows for creating new, user-oriented training sets and parameter settings, and thus new NN models.


2021 ◽  
Author(s):  
Tianyi Liu ◽  
Zhehui Chen ◽  
Enlu Zhou ◽  
Tuo Zhao

Momentum stochastic gradient descent (MSGD) algorithm has been widely applied to many nonconvex optimization problems in machine learning (e.g., training deep neural networks, variational Bayesian inference, etc.). Despite its empirical success, there is still a lack of theoretical understanding of convergence properties of MSGD. To fill this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion approximations for nonconvex optimization problems with strict saddle points and isolated local optima. Our study shows that the momentum helps escape from saddle points but hurts the convergence within the neighborhood of optima (if without the step size annealing or momentum annealing). Our theoretical discovery partially corroborates the empirical success of MSGD in training deep neural networks.


2021 ◽  
Author(s):  
Ruthvik Vaila

Spiking neural networks are biologically plausible counterparts of artificial neural networks. Artificial neural networks are usually trained with stochastic gradient descent (SGD) and spiking neural networks are trained with bioinspired spike timing dependent plasticity (STDP). Spiking networks could potentially help in reducing power usage owing to their binary activations. In this work, we use unsupervised STDP in the feature extraction layers of a neural network with instantaneous neurons to extract meaningful features. The extracted binary feature vectors are then classified using classification layers containing neurons with binary activations. Gradient descent (backpropagation) is used only on the output layer to perform training for classification. Surrogate gradients are proposed to perform backpropagation with binary gradients. The accuracies obtained for MNIST and the balanced EMNIST data set compare favorably with other approaches. The effect of the stochastic gradient descent (SGD) approximations on learning capabilities of our network are also explored. We also studied catastrophic forgetting and its effect on spiking neural networks (SNNs). For the experiments regarding catastrophic forgetting, in the classification sections of the network we use a modified synaptic intelligence that we refer to as cost per synapse metric as a regularizer to immunize the network against catastrophic forgetting in a Single-Incremental-Task scenario (SIT). In catastrophic forgetting experiments, we use MNIST and EMNIST handwritten digits datasets that were divided into five and ten incremental subtasks respectively. We also examine behavior of the spiking neural network and empirically study the effect of various hyperparameters on its learning capabilities using the software tool SPYKEFLOW that we developed. We employ MNIST, EMNIST and NMNIST data sets to produce our results.


2020 ◽  
Vol 2020 (12) ◽  
pp. 124010
Author(s):  
Sebastian Goldt ◽  
Madhu S Advani ◽  
Andrew M Saxe ◽  
Florent Krzakala ◽  
Lenka Zdeborová

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 560
Author(s):  
Shrihari Vasudevan

This paper demonstrates a novel approach to training deep neural networks using a Mutual Information (MI)-driven, decaying Learning Rate (LR), Stochastic Gradient Descent (SGD) algorithm. MI between the output of the neural network and true outcomes is used to adaptively set the LR for the network, in every epoch of the training cycle. This idea is extended to layer-wise setting of LR, as MI naturally provides a layer-wise performance metric. A LR range test determining the operating LR range is also proposed. Experiments compared this approach with popular alternatives such as gradient-based adaptive LR algorithms like Adam, RMSprop, and LARS. Competitive to better accuracy outcomes obtained in competitive to better time, demonstrate the feasibility of the metric and approach.


Sign in / Sign up

Export Citation Format

Share Document