scholarly journals SEMANTIC SEGMENTATION OF MOBILE LASER SCANNING POINT CLOUDS WITH LONG SHORT-TERM MEMORY NETWORKS: PRELIMINARY RESULTS

Author(s):  
J. Balado ◽  
P. van Oosterom ◽  
L. Díaz-Vilariño ◽  
P. Arias

Abstract. Although point clouds are characterized as a type of unstructured data, timestamp attribute can structure point clouds into scanlines and shape them into a time signal. The present work studies the transformation of the street point cloud into a time signal based on the Z component for the semantic segmentation using Long Short-Term Memory (LSTM) networks. The experiment was conducted on the point cloud of a real case study. Several training sessions were performed changing the Level of Detail of the classification (coarse level with 3 classes and fine level with 11 classes), two levels of network depth and the use of weighting for the improvement of classes with low number of points. The results showed high accuracy, reaching at best 97.3% in the classification with 3 classes (ground, buildings, and objects) and 95.7% with 11 classes. The distribution of the success rates was not the same for all classes. The classes with the highest number of points obtained better results than the others. The application of weighting improved the classes with few points at the expense of the classes with more points. Increasing the number of hidden layers was shown as a preferable alternative to weighting. Given the high success rates and a behaviour of the LSTM consistent with other Neural Networks in point cloud processing, it is concluded that the LSTM is a feasible alternative for the semantic segmentation of point clouds transformed into time signals.

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3466 ◽  
Author(s):  
Balado ◽  
Martínez-Sánchez ◽  
Arias ◽  
Novo

In the near future, the communication between autonomous cars will produce a network of sensors that will allow us to know the state of the roads in real time. Lidar technology, upon which most autonomous cars are based, allows the acquisition of 3D geometric information of the environment. The objective of this work is to use point clouds acquired by Mobile Laser Scanning (MLS) to segment the main elements of road environment (road surface, ditches, guardrails, fences, embankments, and borders) through the use of PointNet. Previously, the point cloud was automatically divided into sections in order for semantic segmentation to be scalable to different case studies, regardless of their shape or length. An overall accuracy of 92.5% has been obtained, but with large variations between classes. Elements with a greater number of points have been segmented more effectively than the other elements. In comparison with other point-by-point extraction and ANN-based classification techniques, the same success rates have been obtained for road surfaces and fences, and better results have been obtained for guardrails. Semantic segmentation with PointNet is suitable when segmenting the scene as a whole, however, if certain classes have more interest, there are other alternatives that do not need a high training cost.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document