scholarly journals LANDSCAPE ANALYSIS TECHNIQUES APPLIED TO A BUDDHIST CARVED ROCK SCULPTURE

Author(s):  
G. Salemi ◽  
E. Faresin ◽  
L. M. Olivieri

Abstract. The Swat valley (Pakistan) has always been considered an important center of Gandhara art. Due to the unfavourable conditions, this artistic phenomenon has long been almost ignored or underestimated, but its documentation is essential for study the symbolism of the figures, their spatial organization, their stylistic variation and their conservative state. The methodology proposed in this project starts form the 3D acquisition with a structured light system in order to obtain a 3D high resolution model of Buddhist carved rock sculpture. From the 3D geometry, The Digital Elevation Model is produced. This DEM is the starting points for the surface analysis using Remote Sensing approaches for classify landforms using pattern recognition. The surface is considered as a landscape, where carved are valleys bordered by slopes and crests. Hillshading, slope analysis and geomorphons are used in order to highlight the surface feature, to “read” all the details not visible due to the bad condition and to map surface state of conservation.

2019 ◽  
pp. 3-21
Author(s):  
N. V. Minayev ◽  
A. A. Nikitin ◽  
D. N. Kozlov

The identification of factor and indicational features, which are characterized by the high informativity and field of view in relation to the soil cover organization, plays a very important role in the soil mapping. Such characteristics are more common for Unmanned Aerial Vehicles (UAV), which include spectrazonal imagery and digital elevation model (DEM) with ultrahigh spatial resolution, necessary for obtaining fine and large scale images. However, the agrogenic micro- and nanotopography is considered as a noise during the studies of the soil cover topographic differentiation under the conditions of plowland, as the genetic soil properties correlate with natural micro- and mesotopography. A filtration algorithm for the land surface roughness, which is not related to the spatial organization of the objective soil properties, is suggested in the paper. The stages of linear dimension identification for self-similar structures of the glacial and agrogenic topography based on two-dimensional Fourier decomposition are demonstrated using the example of a field topography digital model for the area of 125 hectares. Filtering in the frequency domain allowed restoring the natural field topography and substantiating the effective resolution of the DEM and the size of the area to calculate local morphometric specificities of the topography for digital soil mapping.


2018 ◽  
Vol 12 (5-6) ◽  
pp. 50-57 ◽  
Author(s):  
I. S. Voskresensky ◽  
A. A. Suchilin ◽  
L. A. Ushakova ◽  
V. M. Shaforostov ◽  
A. L. Entin ◽  
...  

To use unmanned aerial vehicles (UAVs) for obtaining digital elevation models (DEM) and digital terrain models (DTM) is currently actively practiced in scientific and practical purposes. This technology has many advantages: efficiency, ease of use, and the possibility of application on relatively small area. This allows us to perform qualitative and quantitative studies of the progress of dangerous relief-forming processes and to assess their consequences quickly. In this paper, we describe the process of obtaining a digital elevation model (DEM) of the relief of the slope located on the bank of the Protva River (Satino training site of the Faculty of Geography, Lomonosov Moscow State University). To obtain the digital elevation model, we created a temporary geodetic network. The coordinates of the points were measured by the satellite positioning method using a highprecision mobile complex. The aerial survey was carried out using an unmanned aerial vehicle from a low altitude (about 40–45 m). The processing of survey materials was performed via automatic photogrammetry (Structure-from-Motion method), and the digital elevation model of the landslide surface on the Protva River valley section was created. Remote sensing was supplemented by studying archival materials of aerial photography, as well as field survey conducted immediately after the landslide. The total amount of research results made it possible to establish the causes and character of the landslide process on the study site. According to the geomorphological conditions of formation, the landslide refers to a variety of landslideslides, which are formed when water is saturated with loose deposits. The landslide body was formed with the "collapse" of the blocks of turf and deluvial loams and their "destruction" as they shifted and accumulated at the foot of the slope.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Sign in / Sign up

Export Citation Format

Share Document