scholarly journals TERRESTRIAL LASER SCANNER DATA TO SUPPORT COASTAL EROSION ANALYSIS: THE CONERO CASE STUDY

Author(s):  
S. Calligaro ◽  
G. Sofia ◽  
M. Prosdocimi ◽  
G. Dalla Fontana ◽  
P. Tarolli
Author(s):  
Nikolay Lugovoy ◽  
Nikolay Lugovoy ◽  
Askar Ilyasov ◽  
Askar Ilyasov ◽  
Elena Pronina ◽  
...  

The paper describes application of the terrestrial laser scanner for investigation of coastal dynamics of the Svetlogorskaya Bay, Baltic Sea. Methods of investigation and results of surveys repeated over the two consecutive years for quantification of coastal erosion and slope processes within the coastal zone are presented.


2020 ◽  
Vol 17 (12) ◽  
pp. 3012-3023
Author(s):  
Carlos Magno Moreira de Oliveira ◽  
Márcio Rocha Francelino ◽  
Bruno Araujo Furtado de Mendonça ◽  
Isabela Queiroz Ramos
Keyword(s):  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2964 ◽  
Author(s):  
Gaël Kermarrec ◽  
Hamza Alkhatib ◽  
Ingo Neumann

For a trustworthy least-squares (LS) solution, a good description of the stochastic properties of the measurements is indispensable. For a terrestrial laser scanner (TLS), the range variance can be described by a power law function with respect to the intensity of the reflected signal. The power and scaling factors depend on the laser scanner under consideration, and could be accurately determined by means of calibrations in 1d mode or residual analysis of LS adjustment. However, such procedures complicate significantly the use of empirical intensity models (IM). The extent to which a point-wise weighting is suitable when the derived variance covariance matrix (VCM) is further used in a LS adjustment remains moreover questionable. Thanks to closed loop simulations, where both the true geometry and stochastic model are under control, we investigate how variations of the parameters of the IM affect the results of a LS adjustment. As a case study, we consider the determination of the Cartesian coordinates of the control points (CP) from a B-splines curve. We show that a constant variance can be assessed to all the points of an object having homogeneous properties, without affecting the a posteriori variance factor or the loss of efficiency of the LS solution. The results from a real case scenario highlight that the conclusions of the simulations stay valid even for more challenging geometries. A procedure to determine the range variance is proposed to simplify the computation of the VCM.


2020 ◽  
Vol 50 ◽  
pp. 63-73
Author(s):  
Ganbold Ulziisaikhan ◽  
Dash Oyuntsetseg

Integrating spatial data from different sources results in visualization, which is the last step in the process of digital basic topographic map creation. Digital elevation model and visualization will used for geomorphological mapping, geospatial database, urban planning and etc. Large scale topographic mapping in the world countries is really a prominent challenge in geospatial industries today. The purpose of this work is to integrate laser scanner data with the ones generated by aerial photogrammetry from UAV, to produce detailed maps that can used by geodetic engineers to optimize their analysis. In addition, terrestrial - based LiDAR scans and UAV photogrammetric data were collected in Sharga hill in the north zone of Mongolia. In this paper, different measurement technology and processing software systems combined for topographic mapping in the data processing scheme. UTM (Universal Transverse Mercator) projected coordinate system calculated in WGS84 reference ellipsoid. Feature compilation involving terrestrial laser scanner data and UAV data will integrated to offer Digital Elevation Models (DEM) as the main interest of the topographic mapping activity. Used UAV generate high-resolution orthomosaics and detailed 3D models of areas where no data, are available. That result issued to create topographic maps with a scale of 1:1000 of geodetic measurements. Preliminary results indicate that discontinuity data collection from UAV closely matches the data collected using laser scanner.


2018 ◽  
Vol 56 (8) ◽  
pp. 4945-4955 ◽  
Author(s):  
Yumei Li ◽  
Yanjun Su ◽  
Tianyu Hu ◽  
Guangcai Xu ◽  
Qinghua Guo

2006 ◽  
Vol 21 (115) ◽  
pp. 255-268 ◽  
Author(s):  
Khalil Al-Manasir ◽  
Clive S. Fraser

Sign in / Sign up

Export Citation Format

Share Document