scholarly journals A novel multinuclear solid-state NMR approach for the characterization of kidney stones

2021 ◽  
Vol 2 (2) ◽  
pp. 653-671
Author(s):  
César Leroy ◽  
Laure Bonhomme-Coury ◽  
Christel Gervais ◽  
Frederik Tielens ◽  
Florence Babonneau ◽  
...  

Abstract. The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While Fourier transform infrared (FTIR) imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid-state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multidimensional solid-state NMR methodologies to study the complex chemical and structural properties characterizing kidney stone composition. As a basis for comparison, three hydrates (n=1, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear magic angle spinning (MAS) NMR approach adopted investigates the 1H, 13C, 31P and 31P nuclei, with the 1H and 13C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1H NMR spectra is presented for the three hydrates, based on the structure and local dynamics. The corresponding 31P MAS NMR data indicates the presence of low-level inorganic phosphate species; however, the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real, multitechnique approaches to generate effective outcomes.

2021 ◽  
Author(s):  
César Leroy ◽  
Laure Bonhomme-Coury ◽  
Christel Gervais ◽  
Frederik Tielens ◽  
Florence Babonneau ◽  
...  

Abstract. The spectroscopic study of pathological calcifications (including kidney stones) is extremely rich and helps to improve the understanding of the physical and chemical processes associated with their formation. While FTIR imaging and optical/electron microscopies are routine techniques in hospitals, there has been a dearth of solid state NMR studies introduced into this area of medical research, probably due to the scarcity of this analytical technique in hospital facilities. This work introduces effective multinuclear and multi-dimensional solid state NMR methodologies to study the complex chemical and structural properties characterising kidney stone composition. As a basis for comparison three hydrates (n = 1, 2 and 3) of calcium oxalate are examined along with nine representative kidney stones. The multinuclear MAS NMR approach adopted investigates the 1H, 13C, 31P and 43Ca nuclei, with the 1H and 13C MAS NMR data able to be readily deconvoluted into the constituent elements associated with the different oxalates and organics present. For the first time, the full interpretation of highly resolved 1H NMR spectra is presented for the three hydrates, based on structure and local dynamics. The corresponding 31P MAS NMR data indicates the presence of low-level inorganic phosphate species, however the complexity of these data make the precise identification of the phases difficult to assign. This work provides physicians, urologists and nephrologists with additional avenues of spectroscopic investigation to interrogate this complex medical dilemma that requires real multi technique approaches to generate effective outcomes.


2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


2021 ◽  
Author(s):  
Ulric B. le Paige ◽  
ShengQi Xiang ◽  
Marco M. R. M. Hendrix ◽  
Yi Zhang ◽  
Markus Weingarth ◽  
...  

Abstract. Regulation of DNA-templated processes such as gene transcription and DNA repair depend on the interaction of a wide range of proteins to the nucleosome, the fundamental building block of chromatin. Both solution and solid-state NMR spectroscopy have become an attractive approach to study the dynamics and interactions of nucleosomes, despite their high molecular weight of ~200 kDa. For solid-state NMR (ssNMR) studies, dilute solutions of nucleosomes are converted to a dense phase by sedimentation or precipitation. Since nucleosomes are known to self-associate, these dense phases may induce extensive interactions between nucleosomes, which could interfere with protein binding studies. Here, we characterized the packing of nucleosomes in the dense phase created by sedimentation using NMR and small-angle x-ray scattering (SAXS) experiments. We found that nucleosome sediments are gels with variable degrees of solidity, have nucleosome concentration close to that found in crystals, and are stable for weeks under high-speed magic angle spinning (MAS). Furthermore, SAXS data recorded on recovered sediments indicate that there is no pronounced long-range ordering of nucleosomes in the sediment. Finally, we show that the sedimentation approach can also be used to study low affinity protein interactions with the nucleosome. Together, our results give new insights into the sample characteristics of nucleosome sediments for ssNMR studies and illustrate the broad applicability of sedimentation-based NMR studies.


2010 ◽  
Vol 65 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Ezzat Khan ◽  
Amin Badshah ◽  
Elias Molla ◽  
Peter Thoma ◽  
...  

The molecular structures of three alkynylsilanes, tetrakis(ethynyl-p-tolyl)silane, 3,3,6,6,-tetramethyl- 3,6-disila-triyne, 3,3,6,6,9,9,-hexamethyl-3,6,9-trisila-tetrayne, and of bis(trimethylstannyl)- ethyne have been determined by X-ray diffraction. The same alkynylsilanes, and in addition 1,2- bis(trimethylsilylethynyl)-1,1,2,2-tetramethyldisliane, were studied by solid-state 13C and 29Si MAS NMR spectroscopy. The results of these measurements were compared with crystallographic evidence and also with relevant solution-state NMR data.


1980 ◽  
Vol 41 (1) ◽  
pp. 158-168 ◽  
Author(s):  
T.T.P Cheung ◽  
L.E Worthington ◽  
P.Dubois Murphy ◽  
B.C Gerstein

2021 ◽  
Vol 2 (1) ◽  
pp. 187-202
Author(s):  
Ulric B. le Paige ◽  
ShengQi Xiang ◽  
Marco M. R. M. Hendrix ◽  
Yi Zhang ◽  
Gert E. Folkers ◽  
...  

Abstract. Regulation of DNA-templated processes such as gene transcription and DNA repair depend on the interaction of a wide range of proteins with the nucleosome, the fundamental building block of chromatin. Both solution and solid-state NMR spectroscopy have become an attractive approach to study the dynamics and interactions of nucleosomes, despite their high molecular weight of ∼200 kDa. For solid-state NMR (ssNMR) studies, dilute solutions of nucleosomes are converted to a dense phase by sedimentation or precipitation. Since nucleosomes are known to self-associate, these dense phases may induce extensive interactions between nucleosomes, which could interfere with protein-binding studies. Here, we characterized the packing of nucleosomes in the dense phase created by sedimentation using NMR and small-angle X-ray scattering (SAXS) experiments. We found that nucleosome sediments are gels with variable degrees of solidity, have nucleosome concentration close to that found in crystals, and are stable for weeks under high-speed magic angle spinning (MAS). Furthermore, SAXS data recorded on recovered sediments indicate that there is no pronounced long-range ordering of nucleosomes in the sediment. Finally, we show that the sedimentation approach can also be used to study low-affinity protein interactions with the nucleosome. Together, our results give new insights into the sample characteristics of nucleosome sediments for ssNMR studies and illustrate the broad applicability of sedimentation-based NMR studies.


2000 ◽  
Vol 2 (19) ◽  
pp. 4477-4483 ◽  
Author(s):  
F. Delmaire ◽  
M. Rigole ◽  
E. A. Zhilinskaya ◽  
A. Aboukaı ◽  
R. Hubaut ◽  
...  

2006 ◽  
Vol 927 ◽  
Author(s):  
Son-Jong Hwang ◽  
Robert C. Bowman ◽  
Jason Graetz ◽  
J. J. Reilly

ABSTRACTSeveral solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the β- and γ- phases as well as the most stable α-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the β-AlH3 and γ-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the α-phase materials do not exhibit these changes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Philipp Innig Aguion ◽  
Alexander Marchanka

Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional 13C- and 15N-detected experiments and novel 1H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.


Sign in / Sign up

Export Citation Format

Share Document