resonance assignment
Recently Published Documents


TOTAL DOCUMENTS

414
(FIVE YEARS 49)

H-INDEX

42
(FIVE YEARS 4)

2021 ◽  
Vol 8 ◽  
Author(s):  
Philipp Innig Aguion ◽  
Alexander Marchanka

Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional 13C- and 15N-detected experiments and novel 1H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.


Author(s):  
Yunshan Pei ◽  
Xiaoli Liu ◽  
Kai Cheng ◽  
Guohua Xu ◽  
Ling Jiang ◽  
...  

2021 ◽  
Author(s):  
Alons Lends ◽  
Melanie Berbon ◽  
Birgit Habenstein ◽  
Yusuke Nishiyama ◽  
Antoine Loquet

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is introduced at fast MAS (70 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15N-1H pairs, a sequential walk through DQ (CA+CO) resonance is obtained. Our approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


2021 ◽  
Vol 2 (1) ◽  
pp. 129-138
Author(s):  
Angus J. Robertson ◽  
Jinfa Ying ◽  
Ad Bax

Abstract. Resonance assignment and structural studies of larger proteins by nuclear magnetic resonance (NMR) can be challenging when exchange broadening, multiple stable conformations, and 1H back-exchange of the fully deuterated chain pose problems. These difficulties arise for the SARS-CoV-2 Main Protease, a homodimer of 2 × 306 residues. We demonstrate that the combination of four-dimensional (4D) TROSY-NOESY-TROSY spectroscopy and 4D NOESY-NOESY-TROSY spectroscopy provides an effective tool for delineating the 1H–1H dipolar relaxation network. In combination with detailed structural information obtained from prior X-ray crystallography work, such data are particularly useful for extending and validating resonance assignments as well as for probing structural features.


Sign in / Sign up

Export Citation Format

Share Document