scholarly journals Using delayed decoupling to attenuate residual signals in editing filters

2021 ◽  
Author(s):  
Kenneth A. Marincin ◽  
Indrani Pal ◽  
Dominique P. Frueh

Abstract. Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated without sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.

2021 ◽  
Vol 2 (1) ◽  
pp. 475-487
Author(s):  
Kenneth A. Marincin ◽  
Indrani Pal ◽  
Dominique P. Frueh

Abstract. Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edda Winter ◽  
Philipp Seipel ◽  
Tatiana Zinkevich ◽  
Sylvio Indris ◽  
Bambar Davaasuren ◽  
...  

Abstract Various nuclear magnetic resonance (NMR) methods are combined to study the structure and dynamics of Li1.5Al0.5Ti1.5(PO4)3 (LATP) samples, which were obtained from sintering at various temperatures between 650 and 900 °C. 6Li, 27Al, and 31P magic angle spinning (MAS) NMR spectra show that LATP crystallites are better defined for higher calcination temperatures. Analysis of 7Li spin-lattice relaxation and line-shape changes indicates the existence of two species of lithium ions with clearly distinguishable jump dynamics, which can be attributed to crystalline and amorphous sample regions, respectively. An increase of the sintering temperature leads to higher fractions of the fast lithium species with respect to the slow one, but hardly affects the jump dynamics in either of the phases. Specifically, the fast and slow lithium ions show jumps in the nanoseconds regime near 300 and 700 K, respectively. The activation energy of the hopping motion in the LATP crystallites amounts to ca. 0.26 eV. 7Li field-gradient diffusometry reveals that the long-range ion migration is limited by the sample regions featuring slow transport. The high spatial resolution available from the high static field gradients of our setup allows the observation of the lithium ion diffusion inside the small (<100 nm) LATP crystallites, yielding a high self-diffusion coefficient of D = 2 × 10−12 m2/s at room temperature.


1983 ◽  
Vol 245 (6) ◽  
pp. F792-F800
Author(s):  
R. L. Nunnally ◽  
J. S. Stoddard ◽  
S. I. Helman ◽  
J. P. Kokko

31P-nuclear magnetic resonance (NMR) studies were conducted on split epithelial sheets of frog skins to examine the effects of hypoxia and respiratory pH variations on various phosphate-containing intracellular substrates. Frog skins were split into epithelial sheets from which the supporting tissue was removed. Epithelial sheets in either phosphate-free Cl--Ringer or phosphate-free SO2-4-Ringer were bubbled at room temperature with 100% N2, 100% O2, 2% CO2-98% O2, 5% CO2-95% O2, and 15% CO2-85% O2. The results show that the intracellular pH (pHi) with Cl- -Ringer was 7.19 and with SO2-4-Ringer was 7.42 with extracellular pH of 7.52 when bubbled with 100% O2. These pHiS indicate that H+ concentration is at least an order of magnitude less than predicted from the previously measured Nernst potential. With exposure to increasing extracellular PCO2, there is a polynomial decrease in pHi. The pHi tended to be more alkaline in SO2-4 -Ringer, suggesting the presence of a HCO-3/Cl- exchange mechanism. The ATP concentration is critically and reversibly dependent on PO2. ADP concentrations were consistently low in well-oxygenated conditions. Variable but small quantities of phosphocreatine were detected. These studies demonstrate further the potential importance in utilizing NMR spectroscopy to examine coupling of biochemical substrates to epithelial transport processes.


1963 ◽  
Vol 36 (2) ◽  
pp. 318-324
Author(s):  
W. P. Slichter ◽  
D. D. Davis

Abstract Nuclear magnetic resonance measurements have been made on natural rubber to examine how frequency, temperature, and crystallinity affect the nuclear relaxation. Moecular motions were studied by observing NMR linewidths and spin-lattice relaxation times at temperatures between −100° and 100° C, and at radio frequencies between 2 and 60 Mc. The effect of crystallinity was seen in measurements on stark rubber. The relation between frequency and temperature in the spin-lattice relaxation process is examined in terms of the Arrhenius equation and the WLF expression. The importance of using frequency as a variable in NMR studies of molecular motion is stressed.


1961 ◽  
Vol 34 (5) ◽  
pp. 1574-1600 ◽  
Author(s):  
W. P. Slichter

Abstract The remarkable property that we associate with rubberlike elasticity, the high degree of elastic deformability, has long been known to arise from molecular motion. In fact, Joule recognized a century ago that the retractive force in stretched rubber stems from thermal motions of molecules rather than from attractive forces between molecules, a conclusion which was all the more remarkable because Joule had no idea of the polymeric nature of rubber. This review tells of the newest technique for studying molecular motion, nuclear magnetic resonance spectroscopy (NMR), and of its application to studies of rubberlike substances. Appropriately, the most important measurements of rubberlike elasticity have been mechanical—creep, stress relaxation, dynamic response. The visco-elastic properties have been studied theoretically and have been measured profusely. They have told us much about the spectra of relaxation processes, which range over many decades of frequency. However, the mechanical experiments occur at the macroscopic level. Conclusions as to behavior at the molecular level depend upon the soundness of models. Plainly it is also valuable to examine motion directly at the molecular level. There are several techniques that accomplish this end. Infrared spectroscopy and dielectric relaxation studies are two kinds of measurement that directly indicate the motion of atoms and molecules. To these techniques is added nuclear magnetic resonance spectroscopy. This method responds to molecular behavior quite differently from other kinds of measurement, and avoids some of the restrictions encountered in these other techniques. For example, the requirement of a permanent electric dipole moment effectively excludes dielectric measurements for the study of pure natural rubber and other hydrocarbons, yet motion in such substances is readily seen by NMR. On the other hand, there are distinct limitations to the use of nuclear resonance, as we shall note. In this paper, we shall review the phenomenon of nuclear magnetic resonance, with emphasis on its use in studies of molecular motion in elastomers. It would be wrong to say that NMR has achieved the importance of the principal physical techniques used to study elastomers. Indeed, the information on elastomers yielded by NMR consists largely of isolated examples. Still, we shall seek to show that the method is powerful and has great potentialities. For a more detailed review of the fundamental physics than is given here, the reader is referred to the excellent paper by Pake. A comprehensive survey of NMR studies of polymers is given by Powles.


Sign in / Sign up

Export Citation Format

Share Document