Supplementary material to "GLOFs in the WOS: bibliometrics, geographies and global trends of research of glacial lake outburst floods (Web of Science, 1979–2016)"

Author(s):  
Adam Emmer
2018 ◽  
Vol 18 (3) ◽  
pp. 813-827 ◽  
Author(s):  
Adam Emmer

Abstract. Research on glacial lake outburst floods (GLOFs) – specific low-frequency, high-magnitude floods originating in glacial lakes, including jökulhlaups – is well justified in the context of glacier ice loss and glacial lake evolution in glacierized areas all over the world. Increasing GLOF research activities, which are documented by the increasing number of published research items, have been observed in the past few decades; however, comprehensive insight into the GLOF research community, its global bibliometrics, geographies and trends in research is missing. To fill this gap, a set of 892 GLOF research items published in the Web of Science database covering the period 1979–2016 was analysed. General bibliometric characteristics, citations and references were analysed, revealing a certain change in the publishing paradigm over time. Furthermore, the global geographies of research on GLOFs were studied, focusing on (i) where GLOFs are studied, (ii) who studies GLOFs, (iii) the export of research on GLOFs and (iv) international collaboration. The observed trends and links to the challenges ahead are discussed and placed in a broader context.


2017 ◽  
Author(s):  
Adam Emmer

Abstract. Research of glacial lake outburst floods (GLOFs) – specific low frequency, high magnitude floods originating in glacial lakes, including jokulhlaups – is well justified in the context of glacier ice loss and glacial lake evolution in glacierised areas all over the world. Increasing GLOF research activities, which are documented by the increasing number of published research items, have been observed in the past few decades; however, a comprehensive insight into the GLOF research community, its global bibliometrics, geographies and trends in research is missing. To fill this gap, a set of 892 GLOF research items published in the Web of Science database covering the period 1979–2016 was analysed. General bibliometric characteristics, citations and references were analysed, revealing a certain change in the publishing paradigm over time. Furthermore, the global geographies of research on GLOFs were studied, focusing on: (i) where GLOFs are studied; (ii) who studies GLOFs; (iii) the export of research on GLOFs; and (iv) international collaboration. The observed trends are discussed and placed in a broader context.


2017 ◽  
Author(s):  
Stephan Harrison ◽  
Jeffrey S. Kargel ◽  
Christian Huggel ◽  
John Reynolds ◽  
Dan H. Shugar ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1376
Author(s):  
Taigang Zhang ◽  
Weicai Wang ◽  
Tanguang Gao ◽  
Baosheng An

A glacial lake outburst flood (GLOF) is a typical glacier-related hazard in high mountain regions. In recent decades, glacial lakes in the Himalayas have expanded rapidly due to climate warming and glacial retreat. Some of these lakes are unstable, and may suddenly burst under different triggering factors, thus draining large amounts of water and impacting downstream social and economic development. Glacial lakes in the Poiqu River basin, Central Himalayas, have attracted great attention since GLOFs originating there could have a transboundary impact on both China and Nepal, as occurred during the Cirenmaco GLOF in 1981 and the Gongbatongshaco GLOF in 2016. Based on previous studies of this basin, we selected seven very high-risk moraine-dammed lakes (Gangxico, Galongco, Jialongco, Cirenmaco, Taraco, Beihu, and Cawuqudenco) to simulate GLOF propagation at different drainage percentage scenarios (i.e., 25%, 50%, 75%, and 100%), and to conduct hazard assessment. The results show that, when any glacial lake is drained completely or partly, most of the floods will enter Nepal after raging in China, and will continue to cause damage. In summary, 57.5 km of roads, 754 buildings, 3.3 km2 of farmland, and 25 bridges are at risk of damage due to GLOFs. The potentially inundated area within the Chinese part of the Poiqu River basin exceeds 45 km2. Due to the destructive impacts of GLOFs on downstream areas, appropriate and effective measures should be implemented to adapt to GLOF risk. We finally present a paradigm for conducting hazard assessment and risk management. It uses only freely available data and thus is easy to apply.


2010 ◽  
Vol 31 (6) ◽  
pp. 508-527 ◽  
Author(s):  
Peng Cui ◽  
Chao Dang ◽  
Zunlan Cheng ◽  
Kevin M. Scott

Landslides ◽  
2016 ◽  
Vol 13 (6) ◽  
pp. 1461-1477 ◽  
Author(s):  
J. Klimeš ◽  
J. Novotný ◽  
I. Novotná ◽  
B. Jordán de Urries ◽  
V. Vilímek ◽  
...  

Author(s):  
Beverly A. Friesen ◽  
Christopher J. Cole ◽  
David A. Nimick ◽  
Earl M. Wilson ◽  
Mark J. Fahey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document