Supplementary material to "Measuring compound flood potential from river discharge and storm surge extremes at the global scale and its implications for flood hazard"

Author(s):  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Sanne Muis ◽  
Ted I. E. Veldkamp ◽  
Ivan D. Haigh ◽  
...  
2020 ◽  
Vol 20 (2) ◽  
pp. 489-504 ◽  
Author(s):  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Sanne Muis ◽  
Ted I. E. Veldkamp ◽  
Ivan D. Haigh ◽  
...  

Abstract. The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers, such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify regions with a high compound flooding potential from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. Our analysis indicates many regions that deviate from statistical independence and could not be identified in previous global studies based on observations alone, such as Madagascar, northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.


Author(s):  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Sanne Muis ◽  
Ted I. E. Veldkamp ◽  
Ivan D. Haigh ◽  
...  

Abstract. The interaction between physical drivers from oceanographic, hydrological, and meteorological processes in coastal areas can result in compound flooding. Compound flood events, like Cyclone Idai and Hurricane Harvey, have revealed the devastating consequences of the co-occurrence of coastal and river floods. A number of studies have recently investigated the likelihood of compound flooding at the continental scale based on simulated variables of flood drivers such as storm surge, precipitation, and river discharges. At the global scale, this has only been performed based on observations, thereby excluding a large extent of the global coastline. The purpose of this study is to fill this gap and identify potential hotspots of compound flooding from river discharge and storm surge extremes in river mouths globally. To do so, we use daily time-series of river discharge and storm surge from state-of-the-art global models driven with consistent meteorological forcing from reanalysis datasets. We measure the compound flood potential by analysing both variables with respect to their timing, joint statistical dependence, and joint return period. We find many hotspot regions of compound flooding that could not be identified in previous global studies based on observations alone, such as: Madagascar, Northern Morocco, Vietnam, and Taiwan. We report possible causal mechanisms for the observed spatial patterns based on existing literature. Finally, we provide preliminary insights on the implications of the bivariate dependence behaviour on the flood hazard characterisation using Madagascar as a case study. Our global and local analyses show that the dependence structure between flood drivers can be complex and can significantly impact the joint probability of discharge and storm surge extremes. These emphasise the need to refine global flood risk assessments and emergency planning to account for these potential interactions.


2020 ◽  
Author(s):  
Menaka Revel ◽  
Daiki Ikeshima ◽  
Dai Yamazaki ◽  
Shinjiro Kanae

Author(s):  
Hylke E. Beck ◽  
Noemi Vergopolan ◽  
Ming Pan ◽  
Vincenzo Levizzani ◽  
Albert I. J. M. van Dijk ◽  
...  

2017 ◽  
Author(s):  
Cherry May R. Mateo ◽  
Dai Yamazaki ◽  
Hyungjun Kim ◽  
Adisorn Champathong ◽  
Jai Vaze ◽  
...  

Abstract. Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe Efficiency coefficient decreased by more than 35 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions in finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings are universal and can be extended to global-scale simulations. These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.


2018 ◽  
Vol 13 (8) ◽  
pp. 084012 ◽  
Author(s):  
Philip J Ward ◽  
Anaïs Couasnon ◽  
Dirk Eilander ◽  
Ivan D Haigh ◽  
Alistair Hendry ◽  
...  

2021 ◽  
Author(s):  
Timothy Tiggeloven ◽  
Anaïs Couasnon ◽  
Chiem van Straaten ◽  
Sanne Muis ◽  
Philip Ward

<p>In order to better understand current coastal flood risk, it is critical to be able to predict the characteristics of non-tidal residuals (from here on referred to as surges), such as their temporal variation and the influence of coastal complexities on the magnitude of storm surge levels. In this study, we use an ensemble of Deep Learning (DL) models to predict hourly surge levels using four different types of neural networks and evaluate their performance. Among deep learning models, artificial neural networks (ANN) have been popular neural network models for surge level prediction, but other DL model types have not been investigated yet. In this contribution, we use three DL approaches - CNN, LSTM, and a combined CNN-LSTM model- , to capture temporal dependencies, spatial dependencies and spatio-temporal dependencies between atmospheric conditions and surges for 736 tide gauge locations. Using the high temporal and spatial resolution atmospheric reanalysis datasets ERA5 from ECMWF as predictors, we train, validate and test surge based on observed hourly surge levels derived from the GESLA-2 dataset. We benchmark our results obtained with DL to those provided by a simple probabilistic reference model based on climatology. This study shows promising results for predicting the temporal evolution of surges with DL approaches, and gives insight into the capability to gain skill using DL approaches with different Architectures for surge prediction. We therefore foresee a wide range of advantages in using DL models for coastal applications: probabilistic coastal flood hazard assessment, rapid prediction of storm surge estimates, future predictions of surge levels.</p>


2021 ◽  
Author(s):  
Frerk Pöppelmeier ◽  
David J. Janssen ◽  
Samuel L. Jaccard ◽  
Thomas F. Stocker

Sign in / Sign up

Export Citation Format

Share Document