meteorological forcing
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 118)

H-INDEX

35
(FIVE YEARS 7)

Abstract Snow is a fundamental component of global and regional water budgets, particularly in mountainous areas and regions downstream that rely on snowmelt for water resources. Land surface models (LSMs) are commonly used to develop spatially distributed estimates of snow water equivalent (SWE) and runoff. However, LSMs are limited by uncertainties in model physics and parameters, among other factors. In this study, we describe the use of model calibration tools to improve snow simulations within the Noah-MP LSM as the first step in an Observing System Simulation Experiment (OSSE). Noah-MP is calibrated against the University of Arizona (UA) SWE product over a Western Colorado domain. With spatially varying calibrated parameters, we run calibrated and default Noah-MP simulations for water years 2010-2020. By evaluating both simulations against the UA dataset, we show that calibration decreases domain averaged temporal RMSE and bias for snow depth from 0.15 to 0.13 m and from -0.036 to -0.0023 m, respectively, and improves the timing of snow ablation. Increased snow simulation performance also improves estimates of model-simulated runoff in four of six study basins, though only one has statistically significant improvement. Spatially distributed Noah-MP snow parameters perform better than default uniform values. We demonstrate that calibrating variables related to snow albedo calculations and rain-snow partitioning, among other processes, is a necessary step for creating a nature run that reasonably approximates true snow conditions for the OSSEs. Additionally, the inclusion of a snowfall scaling term can address biases in precipitation from meteorological forcing datasets, further improving the utility of LSMs for generating reliable spatiotemporal estimates of snow.


2022 ◽  
Author(s):  
Aniket Gupta ◽  
Alix Reverdy ◽  
Jean-Martial Cohard ◽  
Didier Voisin ◽  
Basile Hector ◽  
...  

Abstract. From the micro to mesoscale, water and energy budgets of mountainous catchments are largely driven by topographic features such as terrain orientation, slope, steepness, elevation together with associated meteorological forcings such as precipitation, solar radiation and wind. This impact the snow deposition, melting and transport, which further impact the overall water cycle. However, this microscale variability is not well represented in Earth System Models due to coarse resolutions, and impacts of such resolution assumptions on simulated water and energy budget lack quantification. This study aims at exploring these effects on a 15.28 ha small mid-elevation (2000–2200 m) alpine catchment at Col du Lautaret (France). This grass-dominated catchment remains covered with snow for 5 to 6 months per year. The surface-subsurface coupled hyper-resolution (10 m) distributed hydrological model ParFLOW-CLM is used to simulate the impacts of meteorological variability at spatio-temporal micro-scale on the water cycle. These include 3D simulations with spatially distributed forcing of precipitation, solar radiation and wind compared to 3D simulations with non-distributed forcing simulation. Our precipitation distribution method encapsulates the spatial snow distribution along with snow transport. The model simulates the snow cover dynamics and spatial variability through the CLM energy balance module and under the different combinations of distributed forcing. The resulting subsurface and surface water transfers are solved by the ParFLOW module. Distributed forcing induce a snowpack with a more spatially heterogeneous thickness, which becomes patchy during the melt season and shows a good agreement with the remote sensing images. This asynchronous melting results in a longer melting period and smoother hydrological response than the non-distributed forcing, which does not generate any patchiness. Amongst the tested distributed meteorological forcing that impacts the hydrology, precipitation distribution, including snow transportation, is the most important. Solar insolation distribution has an important impact in reducing evapotranspiration depending on the slope orientation. For the studied catchment mainly facing east, it adds small differential melting effect. Wind distribution in the energy budget calculation has a more complicated impact on our catchment as it participate to accelerate the melting when meteorological conditions are favourable but does not generate patchiness at the end in our test case.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1597
Author(s):  
Ibrahim Mohammed Lawal ◽  
Douglas Bertram ◽  
Christopher John White ◽  
Ahmad Hussaini Jagaba ◽  
Ibrahim Hassan ◽  
...  

Inadequate climate data stations often make hydrological modelling a rather challenging task in data-sparse regions. Gridded climate data can be used as an alternative; however, their accuracy in replicating the climatology of the region of interest with low levels of uncertainty is important to water resource planning. This study utilised several performance metrics and multi-criteria decision making to assess the performance of the widely used gridded precipitation and temperature data against quality-controlled observed station records in the Lake Chad basin. The study’s findings reveal that the products differ in their quality across the selected performance metrics, although they are especially promising with regards to temperature. However, there are some inherent weaknesses in replicating the observed station data. Princeton University Global Meteorological Forcing precipitation showed the worst performance, with Kling–Gupta efficiency of 0.13–0.50, a mean modified index of agreement of 0.68, and a similarity coefficient SU = 0.365, relative to other products with satisfactory performance across all stations. There were varying degrees of mismatch in unidirectional precipitation and temperature trends, although they were satisfactory in replicating the hydro-climatic information with a low level of uncertainty. Assessment based on multi-criteria decision making revealed that the Climate Research Unit, Global Precipitation Climatology Centre, and Climate Prediction Centre precipitation data and the Climate Research Unit and Princeton University Global Meteorological Forcing temperature data exhibit better performance in terms of similarity, and are recommended for application in hydrological impact studies—especially in the quantification of projected climate hazards and vulnerabilities for better water policy decision making in the Lake Chad basin.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3112
Author(s):  
Magali Troin ◽  
Richard Arsenault ◽  
Elyse Fournier ◽  
François Brissette

A satisfactory performance of hydrological models under historical climate conditions is considered a prerequisite step in any hydrological climate change impact study. Despite the significant interest in global hydrological modeling, few systematic evaluations of global hydrological models (gHMs) at the catchment scale have been carried out. This study investigates the performance of 4 gHMs driven by 4 global observation-based meteorological inputs at simulating weekly discharges over 198 large-sized North American catchments for the 1971–2010 period. The 16 discharge simulations serve as the basis for evaluating gHM accuracy at the catchment scale within the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). The simulated discharges by the four gHMs are compared against observed and simulated weekly discharge values by two regional hydrological models (rHMs) driven by a global meteorological dataset for the same period. We discuss the implications of both modeling approaches as well as the influence of catchment characteristics and global meteorological forcing in terms of model performance through statistical criteria and visual hydrograph comparison for catchment-scale hydrological studies. Overall, the gHM discharge statistics exhibit poor agreement with observations at the catchment scale and manifest considerable bias and errors in seasonal flow simulations. We confirm that the gHM approach, as experimentally implemented through the ISIMIP2a, must be used with caution for regional studies. We find the rHM approach to be more trustworthy and recommend using it for hydrological studies, especially if findings are intended to support operational decision-making.


2021 ◽  
Author(s):  
Pin Shuai ◽  
Xingyuan Chen ◽  
Utkarsh Mital ◽  
Ethan T. Coon ◽  
Dipankar Dwivedi

Abstract. Meteorological forcing plays a critical role in accurately simulating the watershed hydrological cycle. With the advancement of high-performance computing and the development of integrated watershed models, simulating the watershed hydrological cycle at high temporal (hourly to daily) and spatial resolution (10s of meters) has become efficient and computationally affordable. These hyperresolution watershed models require high resolution of meteorological forcing as model input to ensure the fidelity and accuracy of simulated responses. In this study, we utilized the Advanced Terrestrial Simulator (ATS), an integrated watershed model, to simulate surface and subsurface flow and land surface processes using unstructured meshes at the Coal Creek Watershed near Crested Butte (Colorado). We compared simulated watershed hydrologic responses including streamflow, and distributed variables such as evapotranspiration, snow water equivalent (SWE), and groundwater table drivenby three publicly available, gridded meteorological forcing (GMF) – Daily Surface Weather and Climatological Summaries (Daymet), Parameter-elevation Regressions on Independent Slopes Model (PRISM), and North American Land Data Assimilation System (NLDAS). By comparing various spatial resolutions (ranging from 400 m to 4 km) of PRISM, the simulated streamflow only becomes marginally worse when spatial resolution of meteorological forcing is coarsened to 4 km (or 30 % of the watershed area). However, the 4 km resolution has much worse performance than finer resolution in spatially distributedvariables such as SWE. By comparing models forced by different temporal resolutions of NLDAS (hourly to daily), GMF in sub-daily resolution preserves the dynamic watershed responses (e.g., diurnal fluctuation of streamflow) that are absent in results forced by daily resolution. Conversely, the simulated streamflow shows better performance using daily resolution compared to that using sub-daily resolution. Our findings suggest that the choice of GMF and its spatiotemporal resolution depends on the quantity of interest and its spatial and temporal scale, which may have important implications on model calibration and watershed management decisions.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lele Zhang ◽  
Liming Gao

Quantifying drought and wetness fluctuations is of great significance to the regional ecological environment and water resource security, especially in the fragile Qinghai-Tibetan Plateau (QTP). In this paper, the standardized precipitation evapotranspiration index (SPEI) was calculated based on the observed data and China Meteorological Forcing Dataset (CMFD) in the QTP for the period of 1979–2015, and the drought and wetness evolution based on the SPEI series and respective contribution of temperature and precipitation were also analyzed. Results indicated that meteorological stations are mainly concentrated in the eastern part of the plateau, which cannot reflect the drought and wetness trend of the whole QTP. The linear trend and Mann–Kendall test revealed that SPEI series calculated based on CMFD data at 1-, 3-, 6-, 9-, 12-, and 24-month time scales all showed significant upward trend p < 0.01 , indicating that the QTP as a whole tended to be wetter. Spatially, the regions with significant drying p < 0.1 and increased drought probability were mainly concentrated in the Qaidam Basin and the southern part of the QTP, and the mean contribution rates of temperature and precipitation variability to SPEI trend in these regions were 60% and −11%, respectively. The regions with significant wetting p < 0.1 and decreased drought probability were mainly concentrated in the northeast, central, and western parts of the plateau, and the mean contribution rates of temperature and precipitation variability to SPEI trend were −9% and 61% in these regions. From the statistics in different climatic regions, most of the arid and humid regions in the QTP tended to be drier, while the semiarid regions tended to be wetter.


2021 ◽  
Vol 13 (18) ◽  
pp. 3720
Author(s):  
Guido D’Urso ◽  
Salvatore Falanga Bolognesi ◽  
William P. Kustas ◽  
Kyle R. Knipper ◽  
Martha C. Anderson ◽  
...  

A new approach is proposed to derive evapotranspiration (E) and irrigation requirements by implementing the combination equation models of Penman–Monteith and Shuttleworth and Wallace with surface parameters and resistances derived from Sentinel-2 data. Surface parameters are derived from Sentinel-2 and used as an input in these models; namely: the hemispherical shortwave albedo, leaf area index and water status of the soil and canopy ensemble evaluated by using a shortwave infrared-based index. The proposed approach has been validated with data acquired during the GRAPEX (Grape Remote-sensing Atmospheric Profile and Evapotranspiration eXperiment) in California irrigated vineyards. The E products obtained with the combination equation models are evaluated by using eddy covariance flux tower measurements and are additionally compared with surface energy balance models with Landsat-7 and -8 thermal infrared data. The Shuttleworth and Wallace (S-W S-2) model provides an accuracy comparable to thermal-based methods when using local meteorological data, with daily E errors < 1 mm/day, which increased from 1 to 1.5 mm/day using meteorological forcing data from atmospheric models. The advantage of using the S-W S-2 modeling approach for monitoring ET is the high temporal revisit time of the Sentinel-2 satellites and the finer pixel resolution. These results suggest that, by integrating the thermal-based data fusion approach with the S-W S-2 modeling scheme, there is the potential to increase the frequency and reliability of satellite-based daily evapotranspiration products.


2021 ◽  
pp. 1-21
Author(s):  
Sanne B. M. Veldhuijsen ◽  
Remco J. de Kok ◽  
Emmy E. Stigter ◽  
Jakob F. Steiner ◽  
Tuomo M. Saloranta ◽  
...  

Abstract Recent progress has been made in quantifying snowmelt in the Himalaya. Although the conditions are favorable for refreezing, little is known about the spatial variability of meltwater refreezing, hindering a complete understanding of seasonal snowmelt dynamics. This study aims to improve our understanding about how refreezing varies in space and time. We simulated refreezing with the seNorge (v2.0) snow model for the Langtang catchment, Nepalese Himalaya, covering a 5-year period. Meteorological forcing data were derived from a unique elaborate network of meteorological stations and high-resolution meteorological simulations. The results show that the annual catchment average refreezing amounts to 122 mm w.e. (21% of the melt), and varies strongly in space depending on elevation and aspect. In addition, there is a seasonal altitudinal variability related to air temperature and snow depth, with most refreezing during the early melt season. Substantial intra-annual variability resulted from fluctuations in snowfall. Daily refreezing simulations decreased by 84% (annual catchment average of 19 mm w.e.) compared to hourly simulations, emphasizing the importance of using sub-daily time steps to capture melt–refreeze cycles. Climate sensitivity experiments revealed that refreezing is highly sensitive to changes in air temperature as a 2°C increase leads to a refreezing decrease of 35%.


Sign in / Sign up

Export Citation Format

Share Document