scholarly journals The interaction of free Rossby waves with semi-transparent equatorial waveguide – wave-mean flow interaction

2009 ◽  
Vol 16 (3) ◽  
pp. 381-392 ◽  
Author(s):  
G. M. Reznik ◽  
V. Zeitlin

Abstract. Nonlinear interactions of the barotropic Rossby waves propagating across the equator with trapped baroclinic Rossby or Yanai modes and mean zonal flow are studied within the two-layer model of the atmosphere, or the ocean. It is shown that the equatorial waveguide with a mean current acts as a resonator and responds to barotropic waves with certain wavenumbers by making the trapped baroclinic modes grow. At the same time the equatorial waveguide produces the barotropic response which, via nonlinear interaction with the mean equatorial current and with the trapped waves, leads to the saturation of the growing modes. The excited baroclinic waves can reach significant amplitudes depending on the magnitude of the mean current. In the absence of spatial modulation the nonlinear saturation of thus excited waves is described by forced Landau-type equation with one or two attracting equilibrium solutions. In the latter case the spatial modulation of the baroclinic waves is expected to lead to the formation of characteristic domain-wall defects. The evolution of the envelopes of the trapped Rossby waves is governed by driven Ginzburg-Landau equation, while the envelopes of the Yanai waves obey the "first-order" forced Ginzburg-Landau equation. The envelopes of short baroclinic Rossby waves obey the damped-driven nonlinear Schrodinger equation well studied in the literature.

1994 ◽  
Vol 5 (4) ◽  
pp. 495-523 ◽  
Author(s):  
Luis G. Reyna ◽  
Michael J. Ward

The internal layer behaviour, in one spatial dimension, associated with two classes of Ginzbug–Landau equation with double-well nonlinearities and small diffusivities is investigated. The problems that are examined are the Ginzburg–Landau equation with and without a constant mass constraint. For the constrained problem, steady-state internal layer solutions are constructed using a formal projection method. This method is also used to derive a differential-algebraic system describing the slow dynamics of the constrained internal layer motion. The dynamics of a two-layer evolution is studied in detail. For the unconstrained problem, a nonlinear WKB-type transformation is introduced that magnifies exponentially weak layer interactions and leads to well-conditioned steady problems. A conventional singular perturbation method, without the need for exponential asymptotics, is used on the resulting transformed problem as an alternative method to construct equilibrium solutions and metastable patterns. Exponentially sensitive steady-state internal layer solutions as well as a one-layer evolution are computed accurately using the transformed problem.


2001 ◽  
Vol 35 (2) ◽  
pp. 159-161
Author(s):  
Liu Shi-Da ◽  
Liu Shi-Kuo ◽  
Fu Zun-Tao ◽  
Zhao Qiang

Sign in / Sign up

Export Citation Format

Share Document