scholarly journals Energy transformations and dissipation of nonlinear internal waves over New Jersey's continental shelf

2010 ◽  
Vol 17 (4) ◽  
pp. 345-360 ◽  
Author(s):  
E. L. Shroyer ◽  
J. N. Moum ◽  
J. D. Nash

Abstract. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.

2019 ◽  
Vol 49 (8) ◽  
pp. 2133-2145 ◽  
Author(s):  
Jianjun Liang ◽  
Xiao-Ming Li ◽  
Jin Sha ◽  
Tong Jia ◽  
Yongzheng Ren

AbstractThe life cycle of nonlinear internal waves (NIWs) to the southeast of Hainan Island in the northwestern South China Sea is investigated using synergistic satellite observations, in situ measurements, and numerical simulations. A three-dimensional, fully nonlinear and nonhydrostatic model with ultrafine resolution shows that a diurnal internal tide emanates from a sill in the Xisha Islands at approximately 215 km away from the local shelf break. The internal tide transits the deep basin toward the shelf break and reflects at the sea bottom and seasonal thermocline in the form of a wave beam. Arriving at the shelf break, the internal tide undergoes nonlinear transformation and produces an undular bore. Analyses of in situ measurements reveal that the undular bore appears as sharp depressions of the strong near-surface seasonal thermocline. The undular bore gradually evolves into an internal solitary wave train on the midshelf, which was detected by the spaceborne synthetic aperture radar. This finding has great implications for investigating NIWs in other coastal oceans where waves are controlled by remotely generated internal tides.


2001 ◽  
Vol 106 (C5) ◽  
pp. 9587-9601 ◽  
Author(s):  
John A. Colosi ◽  
Robert C. Beardsley ◽  
James F. Lynch ◽  
Glen Gawarkiewicz ◽  
Ching-Sang Chiu ◽  
...  

2009 ◽  
Vol 54 (6) ◽  
pp. 2255-2272 ◽  
Author(s):  
Sally MacIntyre ◽  
Jordan F. Clark ◽  
Robert Jellison ◽  
Jonathan P. Fram

2020 ◽  
Vol 50 (8) ◽  
pp. 2373-2391 ◽  
Author(s):  
Johannes Becherer ◽  
James N. Moum ◽  
John A. Colosi ◽  
James A. Lerczak ◽  
Jacqueline M. McSweeney

AbstractThe inner shelf is a region inshore of that part of the shelf that roughly obeys Ekman dynamics and offshore of the surf zone. Importantly, this is where surface and bottom boundary layers are in close proximity, overlap, and interact. The internal tide carries a substantial amount of energy into the inner shelf region were it eventually dissipates and contributes to mixing. A part of this energy transformation is due to a complex interaction with the bottom, where distinctions between nonlinear internal waves of depression and elevation are blurred, indeed, where polarity reversals of incoming waves take place. From an intensive set of measurements over the inner shelf off central California, we identify salient differences between onshore pulses from waves with properties of elevation waves and offshore pulses from shallowing depression waves. While the velocity structures and amplitudes of on/offshore pulses 1 m above the seafloor are not detectably different, onshore pulses are both more energetically turbulent and carry more sediments than offshore pulses. Their turbulence is also oppositely skewed: onshore pulses slightly to the leading edges, offshore pulses to the trailing edges of the pulses. We consider in turn three independent mechanisms that may contribute to the observed asymmetry: propagation in adverse pressure gradients and the resultant inflection point instability, residence time of a fluid parcel in the pulse, and turbulence suppression by stratification. The first mechanism may largely explain higher turbulence in the trailing edge of offshore pulses. The extended residence time may be responsible for the high and more uniform turbulence distribution across onshore compared to offshore pulses. Stratification does not play a leading role in turbulence modification inside of the pulses 1 m above the bed.


2020 ◽  
Author(s):  
Peiwen Zhang ◽  
Wenjia Min

<p>Internal waves with strong vertical mixing could be induced by stratified flow over seafloor obstacles. Noted that the stratified flow not only trigger internal tides, but also highly nonlinear internal waves like internal lee waves and internal solitary waves over steep topography features, and the highly nonlinear internal waves are suggested to play an important role in turbulence and mixing. As a typical seafloor obstacle, ridge could significantly modified the propagation of internal tide, internal lee wave and internal solitary wave. We focused on I-Lan ridge with asymmetrical topography feature in Kuroshio region. To the north of the I-Lan ridge, the depth of Philippine basin reached 4000m compared with the depth of 1500m in the south of the ridge, leading to different characteristics of internal wave energy field and ecological characteristics between two sides. Based on numerical simulations, we revealed the generation and propagation of internal waves over marginal ridge, causing by the shear current induced by Kuroshio. We also discussed the turbulence kinetic energy contributed by linear internal waves and nonlinear internal waves, providing the strength of vertical turbulent mixing around the I-Lan ridge. Then we demonstrated the characteristics of complex internal wave field in the strong background shear current over I-Lan ridge.</p>


Sign in / Sign up

Export Citation Format

Share Document