flux divergence
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 68)

H-INDEX

36
(FIVE YEARS 4)

Author(s):  
Benjamin de Foy ◽  
James J. Schauer

Abstract Identifying air pollutant emissions has played a key role in improving air quality and hence the health of billions of people around the world. This has been done using research from multiple directions, two of which are the development of emission inventories and mapping air pollution using satellite remote sensing. The TROPOspheric Monitoring Instrument (TROPOMI) has been providing high resolution vertical column densities of nitrogen dioxide since late October 2018. Using the flux divergence method and a Gaussian Mixture Model, we identify peak emission hotspots over 4 cities in South Asia: Dhaka, Kolkata, Delhi and Lahore. We analyze data from November 2018 to March 2021 and focus on the three dry seasons (November to March) for which retrievals are available. The retrievals are shown to have sufficient spatial resolution to identify individual point and area sources. We further analyze the length scale and eccentricities of the hotspots to better characterize the emission sources. The TROPOMI emission estimates are compared with the EDGAR global emission inventory and the REAS regional inventory. This reveals areas of agreement but also significant discrepancies that should enable improvements and refinements of the inventories in the future. For example, urban emissions are underestimated while power generation emissions are overestimated. Some areas of light manufacturing cause significant signatures in TROPOMI retrievals but are mostly missing from the inventories. The spatial resolution of the TROPOMI instrument is now sufficient to provide detailed feedback to developers of emission inventories as well as to inform policy decisions at the urban to regional scale.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 81
Author(s):  
Zahra Ghassabi ◽  
Ebrahim Fattahi ◽  
Maral Habibi

Analyzing atmospheric circulation patterns characterize prevailing weather in a region. The method of principal component analysis and clustering was used to classify daily atmospheric circulation patterns. The average daily geopotential height of 500 hPa with 0.5° resolution of the ECMWF (1990–2019) were extracted from the Middle East. The S array was used to identify air types, and k-means clustering was used to classify daily air types. All days were divided into eighteen groups. Then, the surface maps and moisture flux divergence at the 850-hPa level of each pattern were studied. The, the connection between circulation patterns and precipitation occurrence is investigated by the PI index. The existence of a variety of precipitation and temperature regimes and consequent dry/wet periods is related to the type and frequency of the circulation patterns. In patterns with south to southwesterly currents, the low-pressure surface center extends from the south of the Red Sea to southern Turkey and is associated with the mid-level trough, where the moisture fluxes converge in the south of the Red Sea, southwest/south of Iran, and east of the Mediterranean Sea. Therefore, according to the intensity of the patterns, the most precipitation falls in the country’s western half, and the Zagros Mountain’s wind side. With the eastward movement of the Cyclonic patterns, the rainfall area extends to the eastern half of the country. With the pattern that the thermal low surface pressure extends to 35 °N latitude and is associated with the mid-level subtropical high, almost no rain occurs in the country.


MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 71-76
Author(s):  
K. PRASAD

A numerical analysis of the synoptic situation leading to devastating floods in Punjab and adjoining states during September 1988 has been carried out. The analysis is done by three dimensional multivariate optimum interpolation (OI) scheme cast on 1° x 1° Lat./Long. Grid. Software has been developed for computation of several derived parameters and linked with the basic flow variable analysis. A diagnostic study of day-to-day rainfall versus the objectively analysed grid point fields of integrated horizontal flux divergence of water vapour is carried out, The study brings out a close spatial correspondence between the area of net moisture flux convergence on the analysis day and the area of heavy rainfall on the following day. The study suggests that the numerical analysis products can be of a good predictive value to a synoptic forecaster In heavy rainfall predictions under difficult and uncertain synoptic situations.


Abstract Upper-ocean heat content and heat fluxes of 10-60-day intraseasonal oscillations (ISOs) were examined using high-resolution currents and hydrographic fields measured at five deep-water moorings in the central Bay of Bengal (BoB) and satellite observations as part of an international effort examining the role of the ocean on monsoon intraseasonal oscillations (MISOs) in the BoB. Currents, temperature and salinity were sampled over the upper 600 to 1200 m from July 2018 -June 2019. The 10-60-day velocity ISOs of magnitudes 20-30 cm s−1 were observed in the upper 200 m, and temperature ISOs as large as 3°C were observed in the thermocline near 100 m. The wavelet co-spectral analysis reveals multiple periods of ISOs carrying heat southward. The meridional heat-flux divergence associated with the 10-60-day band was strongest in the central BoB at depths between 40 and 100 m, where the averaged flux divergence over the observational period is as large as 10−7 ° C s−1. The vertically-integrated heat-flux-divergence in the upper 200 m is about 20-30 Wm−2, which is comparable to the annual-average net surface heat flux in the northern BoB. Correlations between the heat content over the 26° C isotherm and the outgoing longwave radiation indicate that the atmospheric forcing typically leads changes of the oceanic-heat content, but in some instances, during fall-winter months, oceanic-heat content leads the atmospheric convection. Our analyses suggest that ISOs play an important role in the upper-ocean heat balance by transporting heat southward, while aiding the air-sea coupling at ISO time scales.


Abstract We investigated the relationship between the frequency of occurrence of the Orinoco Low-Level Jet (OLLJ) and hydroclimatic variables over northern South America. We use data from the ERA5 atmospheric reanalysis to characterize the spatial and temporal variability of the OLLJ in light of the LLJ-classification criteria available in the literature. An index for the frequency of occurrence of an LLJ was used, based on the hourly maxima of wind speed. The linkages among the OLLJ, water vapor flux, and precipitation were analyzed using a composite analysis. Our results show that during December–January–February (DJF), the OLLJ exhibits its maximum wind speed, with values around 8–10 m/s. During DJF, the analysis shows how the OLLJ transports atmospheric moisture from the Tropical North Atlantic Ocean. During this season, the predominant pathway of the OLLJ is associated with an area of moisture flux divergence located over northeastern South America. During JJA, an area of moisture flux convergence associated with the northernmost location of the ITCZ inhibits the entrance of moisture from northerlies. We also show that the occurrence of the OLLJ is associated with the so-called cross-equatorial flow. During DJF, the period of strongest activity of the OLLJ is associated with the northerly cross-equatorial flow and dry season, whereas during JJA the southerly cross-equatorial flow from the Amazon river basin predominates and contributes to the rainy season over the Orinoco region.


2021 ◽  
Author(s):  
Sherly Shelton

Abstract Atmospheric moisture transportation associated with the occurrence of relatively wet and dry southwest monsoon (SWM) years over Sri Lanka is still not fully understood. This study focused on investigating the role of moisture transport in contrast SWM years. We selected seven wet (SWMWet) and nine dry (SWMDry) years for 1985-2015 and found that the whole country experiences above-average (below average) rainfall in SWMWet (SWMDry) years. In SWMWet years, strengthening moisture-laden low-level jets (LLJ) from the Arabian Sea bring a large amount of moisture towards Sri Lanka. In contrast, the weakening of the LLJ from the Arabian Sea direction is observed in SWMDry years. As a consequence, the climatological mean of net moisture flux (4.35 ×105 kg s-1) over the study domain is increased (5.33×105 kg s-1) and decreased (3.98 ×105 kg s-1) in SWMWet and SWMDry years, respectively. With respect to long-term Vertically Integrate Moisture Flux Divergence (VIMFD, –3.28×10-5 kg m-2 s-1), negative anomalous VIMFD (–1.78×10-5 kg m-2 s-1) in SWMWet years and positive anomalous VIMFD (1.44×10-5 kg m-2 s-1) in SWMDry years are recorded, which ascribed above-average and below-average rainfall over the country. Furthermore, strong moisture convergence (divergence) center in the western/ southwestern part of Sri Lanka during the SWMWet (SWMDry) years explain why strong positive and negative SWM rainfall anomalies are concentrated in these two regions. Furthermore, results highlighted a strong relationship between net moisture flux availability and SWM rainfall (r= 0.63) that may explain the observed SWM rainfall variability over the country.


2021 ◽  
Author(s):  
Takaya Uchida ◽  
Bruno Deremble ◽  
Stephane Popinet

Mesoscale eddies, the weather system of the oceans, although being on the scales of O(20-100 km), have a disproportionate role in shaping the mean jets such as the separated Gulf Stream in the North Atlantic Ocean, which is on the scale of O(1000 km) in the along-jet direction. With the increase in computational power, we are now able to partially resolve the eddies in basin-scale and global ocean simulations, a model resolution often referred to as mesoscale permitting. It is well known, however, that due to grid-scale numerical viscosity, mesoscale-permitting simulations have less energetic eddies and consequently weaker eddy feedback onto the mean flow. In this study, we run a quasi-geostrophic model at mesoscale-resolving resolution in a double gyre configuration and formulate a deterministic closure for the eddy rectification term of potential vorticity (PV), namely, the eddy PV flux divergence. We successfully reproduce the spatial patterns and magnitude of eddy kinetic and potential energy diagnosed from the model. One novel point about our approach is that we account for non-local eddy feedbacks onto the mean flow by solving the `sub-grid' eddy PV equation prognostically in addition to the mean PV. In return, we are able to parametrize the variability in total (mean+eddy) PV at each time step instead of solely the mean PV. A closure for the total PV is beneficial as we are able to account for both the mean state and extreme events.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1208
Author(s):  
Panagiotis Portalakis ◽  
Maria Tombrou ◽  
John Kalogiros ◽  
Aggeliki Dandou ◽  
Qing Wang

Near surface turbulent momentum flux estimates are performed over the Aegean Sea, using two different approaches regarding the drag coefficient formulation, a wave boundary layer model (referred here as KCM) and the most commonly used Coupled Ocean–Atmosphere Response Experiment (COARE) algorithm. The KCM model incorporates modifications in the energy-containing wave spectrum to account for the wave conditions of the Aegean Sea, and surface similarity to account for the stratification effects. Airborne turbulence data during an Etesian outbreak over Aegean Sea, Greece are processed to evaluate the simulations. KCM estimates found up to 10% higher than COARE ones, indicating that the wave-induced momentum flux may be insufficiently parameterized in COARE. Turbulent fluxes measured at about 150 m, and reduced to their surface values accounting for the vertical flux divergence, are consistently lower than the estimates. Under unstable atmospheric stratification and low to moderate wind conditions, the residuals between estimates and measurements are less than 40%. On the other hand, under stable stratification and strong winds, the majority of the residuals are more than 40%. This discrepancy is associated with the relatively high measurement level, shallow boundary layer, and the presence of a low level jet.


2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


2021 ◽  
Vol 21 (17) ◽  
pp. 12835-12853
Author(s):  
Viktoria J. Nordström ◽  
Annika Seppälä

Abstract. During September 2019 a minor sudden stratospheric warming took place over the Southern Hemisphere (SH), bringing disruption to the usually stable winter vortex. The mesospheric winds reversed and temperatures in the stratosphere rose by over 50 K. Whilst sudden stratospheric warmings (SSWs) in the SH are rare, with the only major SSW having occurred in 2002, the Northern Hemisphere experiences about six per decade. Amplification of atmospheric waves during winter is thought to be one of the possible triggers for SSWs, although other mechanisms are also possible. Our understanding, however, remains incomplete, especially with regards to SSW occurrence in the SH. Here, we investigate the effect of two equatorial atmospheric modes, the quasi-biennial oscillation (QBO) at 10 hPa and the semiannual oscillation (SAO) at 1 hPa during the SH winters of 2019 and 2002. Using MERRA-2 reanalysis data we find that the easterly wind patterns resembling the two modes merge at low latitudes in the early winter, forming a zero-wind line that stretches from the lower stratosphere into the mesosphere. This influences the meridional wave guide, resulting in easterly momentum being deposited in the polar atmosphere throughout the polar winter, decelerating the westerly winds in the equatorward side of the polar vortex. As the winter progresses, the momentum deposition and wind anomalies descend further down into the stratosphere. We find similar behaviour in other years with early onset SH vortex weakening events. The magnitude of the SAO and the timing of the upper stratospheric (10 hPa) easterly QBO signal was found to be unique in these years when compared to the years with a similar QBO phase. We were able to identify the SSW and weak vortex years from the early winter location of the zero-wind line at 1 hPa together with Eliassen–Palm flux divergence in the upper stratosphere at 40–50∘ S. We propose that this early winter behaviour resulting in deceleration of the polar winds may precondition the southern atmosphere for a later enhanced wave forcing from the troposphere, resulting in an SSW or vortex weakening event. Thus, the early winter equatorial upper stratosphere–mesosphere, together with the polar upper atmosphere, may provide early clues to an imminent SH SSW.


Sign in / Sign up

Export Citation Format

Share Document